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Sampling and Calibration Requirements for Optical Reflectance Soil
Property Sensors for Korean Paddy Soils
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Optical diffuse reflectance sensing has potential for rapid and reliable on-site estimation of soil properties. For good
results, proper calibration to measured soil properties is required. One issue is whether it is necessary to develop calibrations
using samples from the specific area or areas (e.g., field, soil series) in which the sensor will be applied, or whether a
general “factory” calibration is sufficient. A further question is if specific calibration is required, how many sample points
are needed. In this study, these issues were addressed using data from 42 paddy fields representing 14 distinct soil series
accounting for 74% of the total Korean paddy field arca. Partial least squares (PLS) regression was used to develop
calibrations between soil properties and reflectance spectra. Model evaluation was based on coefficient of determination
(R, root mean square error of prediction (RMSEP), and RPD, the ratio of standard deviation to RMSEP. When sample
data from a soil series were included in the calibration stage (full information calibration), RPD values of prediction models
were increased by 0.03 to 3.32, compared with results from calibration models not including data from the test soil series
(calibration without site-specific information). Higher R values were also obtained in most cases. Including some samples
from the test soil series (hybrid calibration) generally increased RPD rapidly up to a certain number of sample points. A
large portion of the potential improvement could be obtained by adding about 8 to 22 points, depending on the soil
properties to be estimated, where the numbers were 10 to 18 for pH, 18-22 for EC, and 8 to 22 for total C. These results
provide guidance on sampling and calibration requirements for NIR soil property estimation.
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1. INTRODUCTION

Precision agriculture (PA) is well established in North
America, Europe, and Australia, where production fields are
relatively large. PA has also attracted interest and seen

limited adoption in Asian countries including Korea, where

fields are 0.3 to 1.0 ha in size. PA is a management system
where application of agricultural chemicals such as fertilizers,
pesticides, and herbicides is matched to actual needs point-
by-point within fields. This approach can provide economic
benefits to farmers and protection of the soil environment

from excessive applications of chemicals.
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For successful implementation of PA, site-specific quantifi-
cation of soil physical and chemical properties affecting soil
quality and crop production is important. Many of these
properties may change on a finer spatial resolution than can
be practically analyzed with laboratory methods due to time
and cost of the sampling and analysis procedures. Thus it
would be preferable to replace the standard laboratory
methods with another approach that would provide accurate
characterization of within-field variability at a reasonable
cost, and with reliability and timeliness.

Diffuse reflectance spectroscopy (DRS) is a promising,
nondestructive technique for rapid analysis of soil physical
and chemical properties to fulfill these requirements. Many
investigators have successfully estimated soil physical and
chemical properties with visible (VIS), near-infrared (NIR),
and mid-infrared (MIR) spectroscopy. Total C in arable
soils was measured with NIR or VIS-NIR spectroscopy by
several researchers (Chang et al., 2001; Confalonieri et al.,
2001; McCarty et al., 2002; Mouazen et al., 2007) with P
values ranging from 0.73 to 0.95. This technique has also
been used to determine organic C in arable soils (Krishnan
et al., 1980; Dalal and Henry, 1986; Sudduth and Hummel,
1991; Reeves and McCarty, 2001; Shepherd and Walsh,
2002; Islam et al, 2003; Mouazen et al., 2007) and to
estimate soil properties such as cation exchange capacity
(CEC), Ca, K, texture (sand, silt, and clay fractions), Mg,
pH and total N (Sudduth and Hummel, 1993; Ben-Dor and
Banin, 1995; Shepherd and Walsh, 2002; Cozzolino and
Moron, 2003; Islam et al., 2003; Nanni and Dematte, 20006).

The DRS approach has also been applied to Asian fields.
Shibusawa et al. (2005) developed a real-time multi-spectral
soil sensor using nine wavelengths of light. Data collected
at 552, 651, 739, 811, 926, 1007, and 1457 nm were used
to estimate moisture content (MC) and data at 1303 and
1650 nm were used for soil organic matter (SOM) content.
Using partial least squares (PLS) regression, MC was
estimated with R® of 0.76 and standard error of calibration
(SEC) of 2.50% for an Andisol, but SOM was not estimated
successfully. Morimoto et al. (2004) used the same sensor
body, but different sensing hardware. They collected absorbance
spectra from 500 to 1650 nm with a 7 nm interval for 1300
soil samples from Japanese paddy and dryland fields and
used those spectra to estimate SOM, total N, pH, and MC.
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Using a neural network approach, MC, pH, SOM, and total
N were estimated with R? values of 0.91, 0.75, 0.95, and
0.96, respectively.

One important aspect of DRS estimation of soil chemical
and physical properties is identification of the wavelengths
or ranges of wavelengths that are strongly related to the soil
physical and chemical properties of interest. This is one of
the main issues of spectral-based sensing technology,
because the success of a calibration model heavily depends
on selected wavelength bands (Min and Lee, 2005). In a
previous study (Lee et al., 2007) we combined VIS and NIR
reflectance sensing using partial least squares (PLS) regression
to estimate surface and profile soil properties, and to
identify wavelength bands important for estimating soil
properties. Soil samples were obtained from 10 fields in five
states of the North-Central US. Good estimates of organic
C, CEC, Ca, and texture fractions were obtained for both
surface and profile datasets. We also applied a similar
approach for Korean paddy soils (Chung et al., 2008), and
obtained good estimations of Mg (R2 = 0.80), Ca (R2 =
0.77), and total C (R2 = 0.92); fair estimations of pH, EC,
P,0s, K, Na, sand, silt, and clay (R2 = (.59 to 0.72); and
poor estimation of total N. In both studies (Lee et al., 2007,
Chung et al., 2008), many wavelengths selected for estimation
of the soil properties were identical or similar for multiple
soil properties. More important wavelengths were selected
in the visible-shortwave NIR range (350-1000 nm) and the
longwave NIR range (1800-2500 nm) than in the intermediate
NIR range (1000-1800 nm).

Other important considerations for a VIS-NIR soil sensor
are how many calibration samples are required to provide a
prediction model sufficient for field application of the
sensor, and how closely the characteristics of those calibration
samples must be related to the characteristics of the soils to
be analyzed. We investigated these issues for North-Central
US soils {Lee et al., 2008) and found that when sample data
from a field in question were included in the calibration
stage, RPD (the ratio of standard deviation to RMSEP)
values of prediction models increased by 0.16 to 1.78 for
profile data and 0.02 to 1.58 for surface soil data, compared
with results from calibration models that did not include
data from the test field. Including some samples from the
test field generally increased RPD by 0.7 to 1.5 with 6 to
15 sample points, with little further improvement obtained
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with additional points.

The overall objective of this study was to apply a similar
approach to investigate the sampling and calibration
requirements for DRS soil property sensing of Korean
paddy soils. Specific objectives were to determine 1) if
additional calibration between reflectance and laboratory-
determined soil properties would be necessary for application
of a sensor under conditions different from those included
in its initial calibration, and 2) if so, how many additional
sample points from the test area would be required to

improve the calibration sufficiently.

2. MATERIALS AND METHODS

A. Soil Sampling and Laboratory Analysis

Soils used in this study were obtained from 39 paddy
fields representing 14 distinct soil series that account for
74% of the total Korean paddy field area. Table 1 gives

general characteristics of the 14 soil series. Soils of the

Table 1 Descriptions of the 14 soil series investigated in this research
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study areas exhibited differences in parent material, topography,
and texture. Texture also varied by depth. For example, in
the Sachon series overall texture of the soil profile was
sandy loam, but the texture below the A, horizon (disturbed
mineral horizon) was coarse loam (Table 1).

Five 9-cm diameter, 65-cm long sample cores were
obtained from each field and segmented by depth on a 5-cm
interval. Within each field, soil from each depth was
combined and the resulting composite sample analyzed at
the Yeongnam Agricultural Research Institute using methods
described by the National Institute of Agricultural Science
and Technology (2000). P,Os was determined by the Lancaster
method, and cations (K, Ca, Mg, and Na) by the ammonium
acetate method. Total C, total N, EC, and pH were also
determined. The number of samples per soil series varied
from 24 (i.e., Bigog) to 52 (i.e.,, Yecheon) and the total
number of samples was 631 (Table 1).

Summary statistics of laboratory measurements are given

in table 2. There were wide variations in most of the soil

[a]

Soil series Parent material Topography Overall texture No. samples
Sachon Local alluvium from acidic rock Local alluvial valley Sandy loam (coarse loam) 52
Chilgog Alluviunrcolluvium from granite Mountain footslope Loam (fine loam) 51
Hwadong Old alluvium River terrace Silt loam (fine clay) 39
Maegog Alluviumrcolluvium from acidic rock Local alluvial valley Sandy loam (coarse loam) 47
Yecheon Local alluvium from acidic rock Local alluvial plain Sandy loam (coarse loam) 52
Hamchang Alluvium Alluvial plain Sandy loam (coarse loam) 50
Yuga Local alluvium from gray shale Local alluvial valley Silt loam (ﬁrie silt) 48
Imgog Alluvium from acidic rock Local alluvial valley Loam (fine loam) 48
Hoegog Alluvium from acidic rock Local alluvial valley Sandy loam (coarse loam) 38
Bigog Alluvium from acidic rock Local alluvial valley Silt loam (fine loam) 24
Gyeongsan Colluvium from gray shale Local alluvial valley Silt loam (fine silt) 52
Gwangpo Fluvio'marine deposits Fluvio-marine plain Sandy loam (coarse loam) 52
Gamcheon Local alluvium from schist Local alluvial valley Loam (Coarse loam) 39
Deunggu Fluvio-marine deposits Fluvio-marine plain Silt loam (fine silt) 39
B Texture below A, horizon given in parentheses

Table 2 Summary statistics of laboratory-determined soil properties

Soil property Minimum Maximum Mean Standard deviation Skewness
pH 4.30 8.16 6.23 0.71 0.17
EC, dS m" 0.00 2.96 041 041 2.65
P,0s, mg kg’ 0.01 584.32 68.62 104.34 2.87
K, cmol kg’ 0.03 0.82 0.17 0.14 2.48
Ca, cmol kg’ 1.19 22.62 5.52 322 1.72
Mg, cmol kg’ 0.30 597 1.53 1.14 1.60
Na, cmol kg’ 0.04 1.85 0.25 0.25 3.44
Total C, % 0.12 3.18 0.96 0.68 1.11
Total N, % 0.00 2.68 0.19 0.29 4.23
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properties because the samples were from different soil
series and depths. For example, P,Os varied from 0.01 to
584.32 mg kg'. If a single calibration could be developed
to represent this variation, we might reasonably expect it to
be generally applicable across a wide range of Korean
paddy soils in addition to the soils from which it was

developed.

B. Spectral Data Acquisition

Soil spectral reflectance data were obtained in the
laboratory using an ASD FieldSpec 3" spectrometer (Analytical
Spectral Devices, Boulder, Colo.). Spectra recorded between
350 and 2500 nm were output on a 3-nm interval. The
spectrometer used three detector systems: 1) a silicon
photodiode array for 350-1000 nm, 2) an InGaAs detector
for 1000-1800 nm, and 3) an enhanced InGaAs detector for
1800-2500 nm. For reflectance data collection, subsamples
of the soils collected in the field were air dried and sieved
with a 2-mm screen. Soil was packed in a sample holder
with 32-mm inner diameter well and quartz window for
reflectance determination. The sample was illuminated
through the window by a halogen lamp and the reflected
light was transmitted to the spectrometer through a fiber
optic bundle. Each soil spectrum was obtained as the mean
of 10 scans. The spectrometer data collection software
automatically adjusted the data for dark current variations
using dark current scans obtained at the beginning of each
data collection session, and at least once every 30 minutes
thereafter. A Spectralon (Labsphere Inc., North Sutton, N.H.)
reflectance standard was scanned after every 10 soils and
used to convert the raw spectral data to decimal reflectance.

The reflectance data showed variations for different soil
series and depths (Fig. 2). Reflectance data were preprocessed
to remove erroneous measurements and improve stability of
the regression. The first 30 readings at the lower visible
wavelengths were deleted due to their low signal-to-noise ratio,
as suggested by Lee et al. (2007). Then, data were transformed
from reflectance to absorbance (logio [l/reflectance]), 1™

derivative and normalization were conducted.
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Fig. 1 Soil reflectance spectra for two soil series at three depths.

C. Analytical Procedures

Partial lecast squares (PLS) regression, implemented in
Unscrambler version 9.1 (CAMO Inc., Oslo, Norway), was
used to develop calibrations between soil properties and the
preprocessed reflectance spectra. PLS has been used widely
in chemometrics, remote sensing, and spectral data processing
to deal with large numbers of highly correlated variables.
PLS creates a new set of variables (called factors) that are
uncorrelated and that explain variation in both response and
predictor variables (Beebe and Kowalski, 1987). A key step
in PLS regression is selecting the optimal number of factors
to best represent the calibration data without overfitting. In
this analysis, a 10-segment cross-validation approach, an option
available in Unscrambler, was used to choose the optimum
number of PLS factors.

Model evaluation was based on coefficient of determi-
nation (RZ), root mean square error of prediction (RMSEP,
eq. 1), and RPD, the ratio of standard deviation to RMSEP.

n (s _ 2
Rusgp= |3 210 )

i=l n

where: n = number of samples used for prediction
Vi

Vi = measured value of soil property

1l

predicted value of soil property

RPD is a useful measure of fit when comparing results
from datasets containing different degrees of variability,

where a higher RPD indicates a more accurate prediction.

1) Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation
or endorsement by the Rural Development Administration, Republic of Korea, the US Department of Agriculture or their cooperators.
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For example, Chang et al. (2001) grouped the ability of NIR
spectroscopy to predict values of soil properties into three
categories (A, B, C) based on RPD ranges (> 2.0, 1.4-2.0,
and < 1.4). In this study, we used increase or decrease in
RPD as a main criterion for interpreting differences between
prediction models obtained using the different calibration
methods described below. Change in R” was also used as a
secondary criterion.

Data from the 3 to 4 fields in each soil series were pooled
for analysis. Three different calibration methods were

investigated:

® Method 1: Full Information Calibration. This method used
data from all 14 datasets in development of the initial
calibration equation. The calibration equation was then
used to calculate separate prediction statistics for each of
the 14 datasets.

¢ Method 2: Calibration without Site-Specific Information.
This method simulated use of a “factory-calibrated”
sensor under conditions different from those used to
develop the initial calibration. A calibration model was
developed using 13 of the 14 datasets and prediction
statistics were calculated for the remaining, “leave-out”
dataset. This process was repeated 14 times to obtain
prediction statistics for all datasets.

¢ Method 3: Hybrid Calibration. This method was intermediate
between methods 1 and 2, simulating the addition of a
small number of specific calibration points to an initial
general calibration. PLS calibrations were developed as in
method 2, but with a number of additional calibration

samples from the “leave-out” dataset included. The number
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of additional samples was iteratively increased from zero
(equivalent to method 2) to the maximum number of
points in the dataset (equivalent to method 1). Prediction

statistics were calculated as for method 2.

3. RESULTS AND DISCUSSION

A. Method 1 and Method 2

Table 3 shows results of the PLS calibration and cross
validation. Reasonable estimates were obtained for all soil
properties except total N. Considering both R’ and RPD
criteria, the best estimates were obtained for pH, EC, Ca,
Mg, Na and total C.

Table 3 Validation statistics for method 1 soil property estimation
using data from 14 soil series in Korean paddy fields

Soil property Validation R RMSEP RPD
pH 0.76 0.35 2.04
EC, dS m' 0.77 0.20 2.08
P,0s, mg kg’ 0.72 55.53 1.88
K, cmol kg’ 0.74 0.07 1.95
Ca, cmol kg’ 0.80 1.46 221
Mg, cmol kg’ 0.80 0.50 2.26
Na, cmol kg’ 0.76 0.12 2.05
Total C, % 0.95 0.16 429
Total N, % 0.02 028 1.01

Fig. 2-left is a scatter plot comparing RPD values for soil
property estimates by methods 1 and 2. RPD values were
located below the 1:1 line, indicating that method 1, where
specific soil series information was included, was consistently

better than method 2, regardless of soil series or soil property.
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Fig. 2 Comparison of RPD (left) and R? (right) statistics for methods 1 and 2 across all datasets. The 1:1 line is also shown for reference.
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To further investigate the increase in RPD, method 2
RPD values were subtracted from method 1 RPD values.
Soil properties with RPD values greater than 2.0 in the
method 1 analysis are shown in table 4. In general, RPD
increases varied by “leave-out” dataset and soil property,
ranging from 0.03 to 3.32. By “leave-out” dataset (or soil
series), average increases were in the range of 1.00 to 1.38
for Hwadong, Maegog, Yuga, and Gamcheon soils. The
values were less for the other soils, ranging from 0.36 to
0.91, but they were greater than 0.5, except for Sachon soils,
indicating the importance of including soil series-specific
information in the initial calibration stage.

RPD increases for fotal C were generally high with values
of 1.68 to 3.32 for Sachon, Hwadong, Yecheon, Hamchang,
Yuga, Imgog, Bigog, and Gyeongsan soils, and 0.38 to 0.99
for Chilgog, Maegog, Heogog, Gwangpo, and Gamcheon
soils. The mean RPD increase of 1.78 for total C was much
greater than that for other soil properties (Table 4). Therefore,
it would be particularly important to include calibration soil
samples from the specific soil series for total C estimation.
Soils with RPD increases greater than 1.00 were Maegog,
Yecheon, Hamchang, Yuga, Gamcheon, and Deunggu for
pH, Hwadong, Yuga, Gwangpo, and Gamcheon for Ca, and
Maegog, Yuga, and Gamcheon for Mg. With this level of
RPD improvement, it would be important to include calibration

Table 4 Difference in RPD values between methods 1 and 2

J. of Biosystems Eng. Vol. 33, No. 4.

soil samples for all these soil series and soil properties.

Methods 1 and 2 were also compared by calculating
increases in R® values of method 1 compared to method 2
(Fig. 2, right). These values were mostly positive, indicating
that models using method 1 were more predictive than those
using method 2 and confirming the RPD analysis. As in the
RPD analysis, increases in R’ values were considerably
different for different fields and soil properties.

Based on the RPD and R? results, we concluded that NIR
soil property estimations would be degraded considerably if
sample data from fields with conditions similar to sites
where the sensor was to be used were not included in the
calibration. The pooled datasets used in this analysis suggested
that samples did not need to be from the exact fields under
study, but at least should come from fields within the same

soil series.

B. Method 3

With method 3, RPD increased as the number of test
dataset samples added to the calibration model increased,
but degree of the increase was different for different soil
series and soil properties. Fig. 3 shows examples of RPD
vs. number of sample points added from method 2 for pH
(top), EC (middle) and total C (bottom).

Soil series pH EC Ca Mg Na Total C Average
Leaveout dataset

Sachon 0.63 0.51 0.34 0.18 0.03 223 0.65
Chilgog 0.33 0.75 0.19 0.24 0.27 0.38 0.36
Hwadong 0.73 0.72 1.15 0.48 0.80 332 1.20
Maegog 1.14 0.82 0.71 1.42 1.49 0.39 1.00
Yecheon 1.10 1.05 0.37 0.19 0.50 1.88 0.85
Hamchang 1.33 0.49 0.67 0.28 0.23 1.68 0.78
Yuga 1.18 0.73 1.20 1.92 0.57 2.67 1.38
Imgog 0.88 0.38 0.90 0.73 0.23 2.34 0.91
Hoegog 0.37 0.41 0.36 0.74 0.67 0.61 0.53
Bigog 0.27 0.29 0.19 0.23 0.09 2.48 0.59
Gyeongsan 0.86 0.44 0.25 0.31 0.31 2.11 0.71
Gwangpo 1.06 0.64 1.37 0.95 0.44 0.98 0.91
Gamcheon 0.48 0.52 2.08 1.43 0.54 0.99 1.01
Deunggu 1.25 0.30 0.48 0.34 0.06 2.84 0.88
Average 0.83 0.57 0.73 0.67 045 1.78
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Fig. 3 RPD of calibration model vs. number of sample points
included from the “leave-out” dataset for pH (top), EC (middle),
and total C (bottom).

For pH, RPD values increased more rapidly as the added
points increased up to a certain number (e.g., about 10 for
Gwangpo and Imgog, and 18 for Bigog, Yuga, and Hamchang
soils), then rate of the RPD increase became lower, and in
some cases near zero. RPD increases were about 0.8 and
0.9 with 10 added sample points for Gwangpo and Imgog
soils, respectively, and about 1.1 with 18 added points for
Yuga soils. For other soils, RPD values increased gradually
(e.g., Sachon, Yecheon, and Gyeongsan soils), or there were
only slight increases (e.g., Chilgok and Hoegog soils).

For EC, although the slopes of RPD increases were
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different for different fields, the pattern of RPD increases up
to certain numbers (about 18-22) of added points was
similar. For total C, initial increases in RPD were greater
than for other soil properties. For many soils, the increases
were greater than 1.0 with from 8-22 added sample points.
For example, the increases were 1.2, 1.5, and 1.9 with 8,
12, and 18 added points for Yecheon, Hwadong, and Yuga
soils, respectively.

In general, rates of RPD increase with few added points
were greater for soil properties with larger overall increases
in RPD between methods 1 and 2 (e.g., total C) than for
those with smaller increases (e.g., EC). Most of the improve-
ment in RPD was obtained with a few samples - from 8 to
22 depending on the soil properties to be estimated. Based
on these findings, site-specific calibration with a limited

number of samples is suggested for accurate results.
4. CONCLUSIONS

The overall objective of this research was to develop a
DRS-based soil property sensor for precision agriculture. In
this part of the study, different calibration methods were
devised and compared to investigate sampling and calibration
requirements for the sensor. The data used came from 39
paddy fields representing 14 distinct soil series accounting
for 74% of the total Korean paddy field area. Soil samples
were obtained on a 5-cm depth interval to a maximum
65-cm depth and analyzed in the laboratory for multiple soil
properties. Soil reflectance spectra from 350 to 2500 nm,
obtained using a commercial spectrometer, were the dataset
used in this study to estimate laboratory-determined soil

properties. Major findings were:

® Not including calibration information from a specific soil
series (method 2) resulted in lower RPD values compared
to including samples from that soil series in the
calibration dataset (method 1). Reductions in RPD ranged
from 0.03 to 3.32, depending on soil series and soil property.
In most cases, R® values increased when soil-specific
information was added in the calibration stage.

® When the number of soil-specific samples included in the
PLS calibration was increased (method 3: hybrid calibration),
RPD increased rapidly up to a certain number of added



samples, but the degree of the increase was different for
different soil series and soil properties. For many of the
soil series, the sample numbers were 10 to 8 for pH (RPD
increases of 0.8 to 1.1), 18 to 22 for EC (RPD increases
of 0.3 to 0.6), and 8 to 22 for total C (RPD increases of
1.2 to 1.9).

These results provided guidance on sampling and calibration
requirements for DRS soil property estimation. Additional
data collection, further investigation using additional model
selection criteria, interpretation of model improvement in
terms of ranges of and DRS responses to each soil property,
and automation of these procedures are subjects for future
study.
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