• Title/Summary/Keyword: Soil Respiration

Search Result 202, Processing Time 0.023 seconds

Effect of Tyvex Mulching and Trickle Irrigation on Fruit Quality in Satsuma Mandarin (Citrus unshiu Mark.) (온주밀감의 과실 품질에 미치는 타이벡 멀칭 및 점적관수의 효과)

  • Han, Sang-Heon;Kang, Hoon;Chae, Chi-Won
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.18-25
    • /
    • 2014
  • This study was conducted to investigated effects of water relation of mulching and trickle irrigation on the external and internal fruit quality in Satsuma mandarin grafted on trifoliate orange rootstock in a orchard assigned to randomly three groups; whole period of Tyvex mulching (TM), Tyvex mulching with trickle irrigation once a week from October 22 to harvesting season (WM) and non-mulching treatment (NM). The average soil moisture content in the TM was lower than the WM during the time of trickle irrigation from Oct. 21 to Nov. 28. The leaf water potential was at the level of ${\Psi}max$ of -1.5 to -2.5 MPa during whole period of Tyvex mulching treatment but gradually increased at the point of supplement of water. The water and osmotic potential in juice vesicle was decreased by drought but increased again in response to the supply of water in WM. The total soluble solids (TSS) in fruit juice was increased by drought stress, but diminished in response to supply of water after drought. The content of titratible acidity was increased by drought stress but gradually decreased due to supplement of water after drought, reached it at the level of 1%. It was suggested that the accumulation of the total soluble solids compensates the degree of active osmoregulation and the decrease in content of acidity accounts for the fast respiration and water uptake resulted of the water after drought.

A Study on the Optimum Environmental Conditions for the Creation and Restoration of Artificial Tidal Flat (인공간석지 창출과 복원을 위한 최적환경조건 선정에 관한 연구)

  • Lee Jeoung-Gyu;Okada Mitsumasa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.1
    • /
    • pp.102-112
    • /
    • 1999
  • The purpose of this study is to evaluate the effects of design criteria and environmental conditions of the site of created tidal flats on the structure and function of man-made ecosystem. Seven constructed tidal flats and three natural tidal flats were studied taking the difference in the location (wave height and tidal current), inflow of river water, slope of tidal flat and age after the construction completed into consideration. Parameters studied were physico-chemical and biological characteristics of soils and rate of respiration. The natural tidal flats had higher contents of silt, nitrogen and organic matter compared with the constructed ones. The natural ones had reductive zone below 2cm, whereas the constructed ones had aerobic zone from the surface to below 20cm. The bacterial population in the soil of the constructed tidal flats was one to two orders of magnitude lower than that in the natural ones. Both biomass of macrobenthos and microbial respiration rate, however, were not different significantly between the natural and the constructed tidal flats. There was an exceptional constructed tidal flat with similar physico-chemical and biological characteristics to the natural ones. It is most probable that sufficient conditions to have similar tidal flats to natural ones are the location in enclosed bay or calm coastal area. Thus, to make man-made tidal flats with the same characteristics as those in natural ones, man-made tidal flats should be designed and/or located to enhance the accumulation of silt on tidal flat. It is important to select a place having low water motion for construction of tidal flat.

  • PDF

Effects of Polymer Coating on Seed Vigour in Rice (벼 종자의 Polymer 피복처리가 종자세에 미치는 영향)

  • 이성춘;정춘화;김진희;송동석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.274-285
    • /
    • 1996
  • These experiments were conducted to evaluate the effects of seed coating with ten environmentally acceptable polymers, on germination percentage, water uptake, respiration, emergence and seedling growth characteristics. The water absorption of polymer-coated seeds in saturation condition was highest in klucel and lowest in polyvinyl pyrrolidone(PVP), and that in water was highest in klucel and lowest in maltrin. Respiration rates of polymer-coated seeds in Hwayoungbyeo and Ilpumbyeo were lower than those of none-coated seeds, and those in Daecheongbyeo and Jinmibyeo were higher than that of none-coated seeds, and those of sepiret coated seeds were higher than PVP coated seeds. The germination polimer-coated seed was reduced by one percentage by coating with seed coating machine. Germination percentage was not affected by any of polymer coating in high quality seed, but there were significant effects in low quality seed coating with waterlock, surelease 46 and sepiret significantly reduced germination some cultivars. Germination percentage after accelated ageing treatment were slightly higher most of polymer-coated seeds than in none-coated seeds, but those of sepiret-and klucel-coated seeds were lower significantly. Germination percentage of seeds coated with daran 8600, rnaltrin, sacrust and opadry were enhanced slightly under cold test other polimers reduced germination. The seedling height of polymer-coated seeds were longer than those of none-coated seeds, but those of waterlock, PVP and maltrin coating seeds were shorter, seedling hight was shortened by polimer coating under cold test. Polymer-coated seeds showed higher emergence percentage, shorter emergence time in field condition. The highest emergence percentage and the shortest emergence time was shown at 90% soil moisture content.

  • PDF

An Experimental Study on the Restoration Creation of Tidal Flats (간석지 생태계 복원에 관한 실험적 연구)

  • Lee, Jeoung-gyu;Lee, Nam-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.77-82
    • /
    • 2000
  • Seven constructed and three natural tidal flats were compared to evaluate state-of- the-art of creation and restoration technology for tidal flats. parameters studied were physico-chemical and biological characteristics of soils and rate of respiration. The natural tidal flats had higher contents of silts, nitrogen and organic matter compared to the constructed ones. The natural ones had reductive Bone below 2 cm whereas the constructed ones had oxidative zone from the surface to below 20 cm. The bacterial population in the soil of the constructed tidal flats was one to two magnitudes lower than that in the natural ones. Biomass of macrobenthos and microbial respiration rate, however, were not different significantly between the natural and the constructed tidal flats. The purification capacity by diatom+bacterial+meiobenthos and macrobenthos in the constructed tidal flats was higher than that in the natural ones due to deeper permeable layer for purification in the constructed tidal flats. There was an exceptional constructed tidal flat with similar physico-chemical and biological characteristics to natural ones. Shearing stress to the surface of the tidal flat by the flow of seawater was as low as that of natural ones. These hydraulic conditions seemed to be a controlling factor on structures and functions of tidal flats. The control of hydraulic condition seemed to be one of the most important factors to create natural-like tidal flats.

  • PDF

A Simulation Study to Investigate Climatic Controls on Net Primary Production (NPP) of a Rugged Forested Landscape in the Mid-Western Korean Peninsula (기복이 심한 한반도 중서부 산림경관에서 기후가 순일차생산(NPP)에 미치는 영향에 대한 모사연구)

  • Eum Sungwon;Kang Sinkyu;Lee Dowon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.66-77
    • /
    • 2005
  • We have investigated microclimatic controls on the spatiotemporal variations of net primary production (NPP) of a rugged forested watershed using the process-based biogeochemical model (BIOME-BGC). To validate the model simulation of water and carbon cycles at the plot scale, we have conducted field survey over deciduous broadleaf forest (DBF) and evergreen needleleaf forest (ENF) since 2000. The modeled values of soil temperature, soil moisture and soil respiration showed high correlation with those from the field measurements. The modeled seasonal changes of NPP showed high correlation with air temperature but no significant correlation with water related parameters. The precipitation frequency turned out to be the best climatic factor to explain the annual variation of NPP. Furthermore, NPP of ENF was more sensitive to precipitation frequency than that of DBF. With changes in vegetation cover and topography, the spatial distribution of NPP was of great heterogeneity, which was negatively correlated with the magnitude of NPP. Despite the annual precipitation of 1,400mm, NPP at the study site was constrained by the amount of water available for the vegetation. Such a modeling result should be verified by the field measurements.

Characteristics of Dissimilatory Arsenate-reducing Bacteria (이화형비산염환원균의 특성)

  • Chang, Young-Cheol;Takamizawa, Kazuhiro;Cho, Hoon;Kikuchi, Shintaro
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.75-85
    • /
    • 2012
  • Although, microbial arsenic mobilization by dissimilatory arsenate-reducing bacteria (DARB) and the practical use to the removal technology of arsenic from contaminated soil are expected, most previous research mainly has been focused on the geochemical circulation of arsenic. Therefore, in this review we summarized the previously reported DARB to grasp the characteristic for bioremediation of arsenic. Evidence of microbial growth on arsenate is presented based on isolate analyses, after which a summary of the physiology of the following arsenate-respiring bacteria is provided: Chrysiogenes arsenatis strain BAL-$1^T$, Sulfurospirillum barnesii, Desulfotomaculum strain Ben-RB, Desulfotomaculum auripigmentum strains OREX-4, GFAJ-1, Bacillus sp., Desulfitobacterium hafniense DCB-$2^T$, strain SES-3, Citrobacter sp. (TSA-1 and NC-1), Sulfurospirillum arsenophilum sp. nov., Shewanella sp., Chrysiogenes arsenatis BAL-$1^T$, Deferribacter desulfuricans. Among the DARB, Citrobacter sp. NC-1 is superior to other dissimilatory arsenate-reducing bacteria with respect to arsenate reduction, particularly at high concentrations as high as 60 mM. A gram-negative anaerobic bacterium, Citrobacter sp. NC-1, which was isolated from arsenic contaminated soil, can grow on glucose as an electron donor and arsenate as an electron acceptor. Strain NC-1 rapidly reduced arsenate at 5 mM to arsenite with concomitant cell growth, indicating that arsenate can act as the terminal electron acceptor for anaerobic respiration (dissimilatory arsenate reduction). To characterize the reductase systems in strain NC-1, arsenate and nitrate reduction activities were investigated with washed-cell suspensions and crude cell extracts from cells grown on arsenate or nitrate. These reductase activities were induced individually by the two electron acceptors. Tungstate, which is a typical inhibitory antagonist of molybdenum containing dissimilatory reductases, strongly inhibited the reduction of arsenate and nitrate in anaerobic growth cultures. These results suggest that strain NC-1 catalyzes the reduction of arsenate and nitrate by distinct terminal reductases containing a molybdenum cofactor. This may be advantageous during bioremediation processes where both contaminants are present. Moreover, a brief explanation of arsenic extraction from a model soil artificially contaminated with As (V) using a novel DARB (Citrobacter sp. NC-1) is given in this article. We conclude with a discussion of the importance of microbial arsenate reduction in the environment. The successful application and use of DARB should facilitate the effective bioremediation of arsenic contaminated sites.

Modelling Analysis of Climate and Soil Depth Effects on Pine Tree Dieback in Korea Using BIOME-BGC (BIOME-BGC 모형을 이용한 국내 소나무 고사의 기후 및 토심 영향 분석)

  • Kang, Sinkyu;Lim, Jong-Hwan;Kim, Eun-Sook;Cho, Nanghyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.242-252
    • /
    • 2016
  • A process-based ecosystem model, BIOME-BGC, was applied to simulate seasonal and inter-annual dynamics of carbon and water processes for potential evergreen needleleaf forest (ENF) biome in Korea. Two simulation sites, Milyang and Unljin, were selected to reflect warm-and-dry and cool-and-wet climate regimes, where massive diebacks of pines including Pinus densiflora, P. koraiensis and P thunbergii, were observed in 2009 and 2014, respectively. Standard Precipitation Index (SPI) showed periodic drought occurrence at every 5 years or so for both sites. Since mid-2000s, droughts occurred with hotter climate condition. Among many model variables, Cpool (i.e., a temporary carbon pool reserving photosynthetic compounds before allocations for new tissue production) was identified as a useful proxy variable of tree carbon starvation caused by reduction of gross primary production (GPP) and/or increase of maintenance respiration (Rm). Temporal Cpool variation agreed well with timings of pine tree diebacks for both sites. Though water stress was important, winter- and spring-time warmer temperature also played critical roles in reduction of Cpool, especially for the cool-and-wet Uljin. Shallow soil depth intensified the drought effect, which was, however, marginal for soil depth shallower than 0.5 m. Our modeling analysis implicates seasonal drought and warmer climate can intensify vulnerability of ENF dieback in Korea, especially for shallower soils, in which multi-year continued stress is of concern more than short-term episodic stress.

Fly Ash Application Effects on CH4 and CO2 Emission in an Incubation Experiment with a Paddy Soil (항온 배양 논토양 조건에서 비산재 처리에 따른 CH4와 CO2 방출 특성)

  • Lim, Sang-Sun;Choi, Woo-Jung;Kim, Han-Yong;Jung, Jae-Woon;Yoon, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.853-860
    • /
    • 2012
  • To estimate potential use of fly ash in reducing $CH_4$ and $CO_2$ emission from soil, $CH_4$ and $CO_2$ fluxes from a paddy soil mixed with fly ash at different rate (w/w; 0, 5, and 10%) in the presence and absence of fertilizer N ($(NH_4)_2SO_4$) addition were investigated in a laboratory incubation for 60 days under changing water regime from wetting to drying via transition. The mean $CH_4$ flux during the entire incubation period ranged from 0.59 to $1.68mg\;CH_4\;m^{-2}day^{-1}$ with a lower rate in the soil treated with N fertilizer due to suppression of $CH_4$ production by $SO_4^{2-}$ that acts as an electron acceptor, leading to decreases in electron availability for methanogen. Fly ash application reduced $CH_4$ flux by 37.5 and 33.0% in soils without and with N addition, respectively, probably due to retardation of $CH_4$ diffusion through soil pores by addition of fine-textured fly ash. In addition, as fly ash has a potential for $CO_2$ removal via carbonation (formation of carbonate precipitates) that decreases $CO_2$ availability that is a substrate for $CO_2$ reduction reaction (one of $CH_4$ generation pathways) is likely to be another mechanisms of $CH_4$ flux reduction by fly ash. Meanwhile, the mean $CO_2$ flux during the entire incubation period was between 0.64 and $0.90g\;CO_2\;m^{-2}day^{-1}$, and that of N treated soil was lower than that without N addition. Because N addition is likely to increase soil respiration, it is not straightforward to explain the results. However, it may be possible that our experiment did not account for the substantial amount of $CO_2$ produced by heterotrophs that were activated by N addition in earlier period than the measurement was initiated. Fly ash application also lowered $CO_2$ flux by up to 20% in the soil mixed with fly ash at 10% through $CO_2$ removal by the carbonation. At the whole picture, fly ash application at 10% decreased global warming potential of emitted $CH_4$ and $CO_2$ by about 20%. Therefore, our results suggest that fly ash application can be a soil management practice to reduce green house gas emission from paddy soils. Further studies under field conditions with rice cultivation are necessary to verify our findings.

The effect of lime on the potassium requirement for low land paddy (석회(石灰)의 시용(施用)이 수도작(水稻作)에서의 가리소요량(加里所要量)에 미치는 영향(影響))

  • Oh, Wang Keon;Lee, Sang Bum;Park, Chan Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.39-42
    • /
    • 1972
  • A field experiment was conducted in a moderately well drained paddy field doveloped in a narrow strip of a valley in order to observe changes of potassium requirement in paddy production when lime is applied. The results obtained are as follows; 1. The response of paddy to potassium (K) and lime (L) is represented mathematically as follow; $Y=462.78+11.582K-0.058L-0.768K^2-0.000015L^2+0.2204KL$. It is considered that the increase of potassium reqirement when slaked lime is applied, is partially due to the increased growth of plant accomplished by the improvement of soil conditions such as the reduction of respiration inhibitors and cationic balance in soil solution. 2. An economic analysis of the use of potassium and slaked lime applying the costs, 80 won per kg of paddy, 19 won per kg of potassium and 4 won per kg of slaked lime to the response function above, showed that the slaked lime without potssium brought a large loss, whereas the use of the lime together with potassium increased the profit remarkably. The profit increased when 10kg of potassium per 10 a is applied in addition to 200kg slaked limn, per 10kg is amounted 4,685 won. 3. A linear relationship between the economic optimum dose of potassium (y) and the amount of slaked lime (x) in paddy production, is obtained as follow; $$y=7.48+\frac{2.77}{200}x$$ It is, however, considered that the amount of potassium to he used might differ according to the soil conditions such as the potassium content and cation exchange capicity of the soil.

  • PDF

Development of Schizogenous and Lysigenous Aerenchyma in Rice Root

  • Kang, Si-Yong;Wada, Tomikichi;Choi, Kwan-Sam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.77-82
    • /
    • 1998
  • Aerenchyma development in rice (Oryza sativa L.) roots is quite important for adaptation to waterlogged or reduced soil conditions. Anatomical observations were carried out to clarify the development of schizogenous and lysigenous aerenchyma in elongating crown roots of rice. The crown roots of 3rd and 4th phytomer were taken from rice plants of the 8th leaf stage grown by hydroponic culture. The schizogenous intercellular spaces in the cortex of crown root tip were observed using a light microscope with semi ultra-thin sections and the lysigenous aerenchyma in mature tissue of crown root were observed using a cryo scanning electron microscope (cryo-SEM) with freezing fracture method. The schizogenous intercellular spaces in the root tip exist obviously in the middle portion of cortical cell layers close to the root-root cap junction, but not in root cap, stele and outer cell layers of cortex. The air spaces were formed at the junction of four neighbouring cells of inner cortex in the transverse sections, and between longitudinal cell layer connected along the root axis. Although many of those spaces were filled with liquid, some spaces seem to exist as air spaces. The lysigenous aerenchyma in the cortex, which hardly filled with liquid, emerged at 3-4 cm segment from the root tip and increased toward the basal region of root axis. The developing process of lysigenous aerenchyma was primarily separation of a radial row of cells caused by the shrinking and collapsing of cortical cells and then formation of septa along the radial cell rows by the fusion of cell wall with each other. These results suggest that the schizogenous and lysigenous aerenchyma playa role as a passage for the movement of oxygen into the root tip region where oxygen is required for respiration.

  • PDF