Browse > Article
http://dx.doi.org/10.7841/ksbbj.2012.27.2.075

Characteristics of Dissimilatory Arsenate-reducing Bacteria  

Chang, Young-Cheol (Biosystem Course, Division of Applied Sciences, Muroran Institute of Technology)
Takamizawa, Kazuhiro (Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University)
Cho, Hoon (Department of Polymer Science & Engineering, Chosun University)
Kikuchi, Shintaro (Biosystem Course, Division of Applied Sciences, Muroran Institute of Technology)
Publication Information
KSBB Journal / v.27, no.2, 2012 , pp. 75-85 More about this Journal
Abstract
Although, microbial arsenic mobilization by dissimilatory arsenate-reducing bacteria (DARB) and the practical use to the removal technology of arsenic from contaminated soil are expected, most previous research mainly has been focused on the geochemical circulation of arsenic. Therefore, in this review we summarized the previously reported DARB to grasp the characteristic for bioremediation of arsenic. Evidence of microbial growth on arsenate is presented based on isolate analyses, after which a summary of the physiology of the following arsenate-respiring bacteria is provided: Chrysiogenes arsenatis strain BAL-$1^T$, Sulfurospirillum barnesii, Desulfotomaculum strain Ben-RB, Desulfotomaculum auripigmentum strains OREX-4, GFAJ-1, Bacillus sp., Desulfitobacterium hafniense DCB-$2^T$, strain SES-3, Citrobacter sp. (TSA-1 and NC-1), Sulfurospirillum arsenophilum sp. nov., Shewanella sp., Chrysiogenes arsenatis BAL-$1^T$, Deferribacter desulfuricans. Among the DARB, Citrobacter sp. NC-1 is superior to other dissimilatory arsenate-reducing bacteria with respect to arsenate reduction, particularly at high concentrations as high as 60 mM. A gram-negative anaerobic bacterium, Citrobacter sp. NC-1, which was isolated from arsenic contaminated soil, can grow on glucose as an electron donor and arsenate as an electron acceptor. Strain NC-1 rapidly reduced arsenate at 5 mM to arsenite with concomitant cell growth, indicating that arsenate can act as the terminal electron acceptor for anaerobic respiration (dissimilatory arsenate reduction). To characterize the reductase systems in strain NC-1, arsenate and nitrate reduction activities were investigated with washed-cell suspensions and crude cell extracts from cells grown on arsenate or nitrate. These reductase activities were induced individually by the two electron acceptors. Tungstate, which is a typical inhibitory antagonist of molybdenum containing dissimilatory reductases, strongly inhibited the reduction of arsenate and nitrate in anaerobic growth cultures. These results suggest that strain NC-1 catalyzes the reduction of arsenate and nitrate by distinct terminal reductases containing a molybdenum cofactor. This may be advantageous during bioremediation processes where both contaminants are present. Moreover, a brief explanation of arsenic extraction from a model soil artificially contaminated with As (V) using a novel DARB (Citrobacter sp. NC-1) is given in this article. We conclude with a discussion of the importance of microbial arsenate reduction in the environment. The successful application and use of DARB should facilitate the effective bioremediation of arsenic contaminated sites.
Keywords
Arsenate; Arsenic; Dissimilatory arsenate reducing bacteria; Arsenic extraction; Arsenate-reducing bacterium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alam, M. G. M., S. Tokunaga, and T. Maekawa (2001) Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere 43: 1035-1041.   DOI   ScienceOn
2 Macy, J. M., K. Nunan, K. D. Hagen, D. R. Dixon, P. J. Harbour, M. Cahill, and L. I. Sly (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int. J. Syst. Bacteriol. 46: 1153-1157.   DOI   ScienceOn
3 Gates, A. J., R. O. Hughes, S. R. Sharp, P. D. Millington, A. Nilavongse, J. A. Cole, E. R. Leach, B. Jepson, D. J. Richardson, and C. S. Butler (2003) Properties of the periplasmic nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in tungsten supplemented media. FEMS Microbiol. Lett. 220: 261-269.   DOI
4 Oremland, R. S. and J. F. Stolz (2003) The ecology of arsenic. Science. 300: 939-944.   DOI   ScienceOn
5 Ahmann, D., A. L. Roberts, L. R. Krumholtz, and F. M. M. Morel (1994) Microbe grows by reducing arsenic. Nature. 371: 750-751.   DOI   ScienceOn
6 Dowdle, P. R., A. M. Laverman, and R. S. Oremland (1996) Bacterial dissimilatory reduction of arsenate (V) to arsenic (III) in anoxic sediments. Appl. Environ. Microbiol. 62: 1664-1669.
7 Lovley, D. R. and J. D. Coates (1997) Bioremediation of metal contamination. Curr. Opin. Biotechnol. 8: 285-289.   DOI   ScienceOn
8 Macy, J. M., J. M. Santini, B. V. Pauling, A. H. O'Neill, and L. I. Sly (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch. Microbiol. 173: 49-57.   DOI
9 Felisa,W. S., J. S. Blum, T. R. Kulp, G. W. Gordon, S. E. Hoeft, J. Pett-Ridge, J. F. Stolz, S. M. Webb, P. K. Weber, P. C. W. Davies, A. D. Anbar, and R. S. Oremland (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science. 332, 1163-1166.   DOI   ScienceOn
10 Hoeft, S. E., T. R. Kulp, J. F. Stolz, J. T. Hollibaugh, and R. S. Oremland (2004) Dissimilatory arsenate reduction with sulfide as electron donor: experiments with Mono lake water and isolation of strain MLMS-1, a chemoautotorophic arsenate respirer. Appl. Environ. Microbiol. 70: 2741-2747.   DOI
11 Stolz, J. F., D. J. Ellis, J. S. Blum, D. Ahmann, D. R. Lovley, and R. S. Oremland (1999) Sulfurosirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ${\varepsilon}$ proteobacteria. Int. J. Syst. Bacteriol. 49: 1177-1180.   DOI
12 Oremland, R. S., J. S. Blum, A. B. Bindi, P. R. Dowdle, M. Herbel, and J. F. Stolz (1999) Simultaneous reduction of nitrate and selenate by cell suspensions of selenium respiring bacteria. Appl. Environ. Microbiol. 65: 4385-4392.
13 Zobrist, J., P. R. Dowdle, J. A. Davis, and R. S. Oremland (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ. Sci. Technol. 34: 4747-4753.   DOI   ScienceOn
14 Fujita, M., M. Ike, S. Nishimoto, K. Takahashi, and M. Kashiwa (1997) Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. J. Ferment. Bioeng. 83: 517-522.   DOI
15 Bagla, P. and J. Kaiser (1996) India's spreading health crisis draws global arsenic experts. Science. 274: 174-175.   DOI
16 Langner, H. W. and W. P. Inskeep (2000) Microbial reduction of arsenate in the presence of ferrihydrite. Environ. Sci. Technol. 34: 3131-3136.   DOI
17 Prins, R. A., W. Cline-Theil, A. Malestein, and G. H. M. Counotte (1980) Inhibition of nitrate reduction in some rumen bacteria by tungstate. Appl. Environ. Microbiol. 40: 163-165.
18 Yamamura, S., M. Ike, and M. Fujita (2003) Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. strain SF-1. J. Biosci. Bioeng. 96: 454-460.   DOI
19 Niggemyer, A., S. Spring, E. Stackebrandt, and R. F. Rosenzweig (2001) Isolation and characterization of a novel As (V)-reducing bacterium: implication for arsenic mobilization and the genus Desulfitobacterium. Appl. Environ. Microbiol. 67: 5568-5580.   DOI   ScienceOn
20 Bouchard, B., R. Beaudet, R. Villemur, G. Mcsween, F. Lepine, and J. G. Bisaillon (1996) Isolation and characterization of Desulfitobacterium frapperi sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int. J. Syst. Bacteriol. 46: 1010-1015.   DOI
21 Christiansen, N. and B. K. Ahring (1996) Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int. J. Syst. Bacteriol. 46: 442-448.   DOI
22 Stackebrandt, E., P. Schumann, E. Schuler, and H. Hippe (2003) Reclassification of Desulfotomaculum auripigmentum as Desulfosporosinus auripigmenti corrig., comb. nov. Int. J. Syst. Evol. Microbiol. 53: 1439-1443.   DOI   ScienceOn
23 Herbel, M. J., J. S. Blum, S. E. Hoeft, S. M. Cohen, L. L. Arnold, J. Lisak, J. F. Stolz, and R. S. Oremland (2002) Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut. FEMS Microbiol. Ecol. 41: 59-67.   DOI
24 Chang, Y. C., A. Nawata, K. Jung, and S. Kikuchi, Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil. J. Ind. Microbiol. Biotechnol. 39: 37-44 (2012).   DOI
25 Saltikov, C. W., A. Cifuentes, K. Venkateswaran, and D. K. Newman (2003) The ars detoxification system is advantageous but not required for As (V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl. Environ. Microbiol. 69: 2800-2809.   DOI
26 Ahmann, D., L. R. Krumholz, H. F. Hemond, D. R. Lovley, and F. M. M. Morel (1997) Microbial mobilization of arsenic from sediments of the Aberjona watershed. Environ. Sci. Technol. 31: 2923-2930.   DOI   ScienceOn
27 Yamamura, S., N. Yamamoto, M. Ike, and M. Fujita (2005) Arsenic extraction from solid phase using a dissimilatory arsenate-reducing bacterium. J. Biosci. Bioeng. 100: 219-222.   DOI
28 Gihring, T. M. and J. F. Banfield (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol. Lett. 204: 335-340.   DOI
29 Takai, K., H. Kobayashi, K. H. Nealson, and K. Horikoshi (2003) Deferribacter desulfuricans sp. nov., a novel sulfer-, nitrate-and arsenate-reducing thermophile isolated from a deepsea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 53: 839-846.   DOI
30 Blum, J. S., A. B. Bindi, J. Buzzelli, J. F. Stolz, and R. S. Oremland (1998) Bacillus arsenicoselenatis, sp. nov., Bacillus selenitireducens, sp.nov.: two haloalkaliphiles from Mono lake, California that respire oxyanions of selenium and arsenic. Arch. Microbiol. 171: 19-30.   DOI
31 Afkar, E., J. Lisak, C. Saltikov, P. Basu, R. S. Oremland, and J. F. Stolz (2003) The respiratory arsenate reductase Bacillus selenitireducens strain MLAS10. FEMS Microbiol. Lett. 226: 107-112.   DOI
32 Santini, J. M., J. F. Stolz, and J. M. Macy (2002) Isolation of a new arsenate-respiring bacterium-physiological and phylogenetic studies. Geomicrobiol. J. 19: 41-52.   DOI
33 Rittle, K. A., J. I. Drever, and P. J. S. Colbeerg (1995) Precipitation of arsenic during sulfate reduction. Geomicrobiol. J. 13: 1-12.   DOI
34 Laverman, A. M., J. S. Blum, J. K. Schaefer, E. J. P. Phillips, D. R. Lovley, and R. S. Oremland (1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol. 61: 3556-3561.
35 Newman, D. K., E. K. Kennedy, J. D. Coates, D. Ahmann, D. J. Ellis, and D. R. Morel (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch. Microbiol. 168: 380-388.   DOI   ScienceOn
36 Oremland, R. S., J. S. Blum, C. W. Culbertson, P. T. Visscher, L. G. Miller, P. Dowdle, and F. E. Strohmaier (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60: 3011-3019.
37 Liu, A., E. Garcia-Doninguez, E. D. Rhine, and L. Y. Young (2004) A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol. Ecol. 48: 323-332.   DOI
38 Manning, B. A. and S. Goldberg (1997) Arsenic (III) and arsenic (V) adsorption on three California soils. Soil Sci. 162: 886-895.   DOI   ScienceOn
39 Kraft, T. and J. M. Macy (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem. 255: 647-653.   DOI
40 Newman, D. K., T. J. Beveridge, and F. M. M. Morel (1997) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl. Environ. Microbiol. 63: 2022-2028.
41 Chauret, C. and R. Knowles (1991) Effect of tungsten on nitrate and nitrite reductases in Azospirillum brasilense Sp7. Can. J. Microbiol. 37: 744-750.   DOI
42 Kashiwa, M., S. Nishimoto, K. Takahashi, M. Ike, and M. Fujita (2000) Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1. J. Biosci. Bioeng. 89: 528-533.   DOI
43 Pontius F., K. G, Brown, and C. J. Chen (1994) Health implications of arsenic in drinking water. J. Am. Water Works Assoc. 86: 52-63.