• Title/Summary/Keyword: Soil Radioactivity

Search Result 100, Processing Time 0.032 seconds

CHEMICAL DECONTAMINATION OF SOIL CONTAMINATED WITH Cs-137

  • H. J. Won;Kim, G. N.;C. H. Jung;Park, W. K.;Kim, M. G.;W. Z. Oh;Park, J. H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.83-95
    • /
    • 2004
  • The removal efficiency of several washing agents on the $Cs^+$ ion was investigated. Leaching of $Cs^+$ ion from the soil surface by washing agents is affected by the exchange capability of the washing solution. Reuse tests of the effective soil washing agents such as $BaCl_2$, NaOH, citric acid+ $HNO_3$ and oxalic acid were performed. NaOH, citric acid + $HNO_3$ and oxalic acid solutions can be reused after passing through the ion exchange column. Among the tested solutions, both of citric acid+ $HNO_3$ and oxalic acid were effective for the decontamination of TRIGA research reactor soil. The radioactivity of soils can be reduced to a release level by the successive application.

  • PDF

Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

  • Jeong, Meeyoung;Lee, Kyeong Beom;Kim, Kyeong Ja;Lee, Min-Kie;Han, Ju-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • Odyssey, one of the NASA's Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of $^{40}K$, $^{232}Th$ and $^{238}U$ in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

Radon distribution in geochemical environment and controlling factors in Radon concentration(Case study) (지구화학환경에서의 라돈농도분포와 라돈농도의 지배요인(사례연구))

  • 전효택
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.189-214
    • /
    • 2000
  • Three study areas of Kwanak campus(Seoul National University), Gapyung and Boeun were selected and classified according to bedrock types in order to investigate soil-gas radon concentrations. Several soil-gas samples showed relatively high radon concentrations in the residual soils which derived from granite bedrock. It also showed that water content of soil and the degree of radioactivity disequilibrium was a secondary factor governing radon emanation and distribution of radon radioactivity. The results of radon concentrations and working levels for forty rooms in Kwanak campus, Seoul National University, showed that indoor basement rooms under poor ventilation condition can be classified as high radon risk zone having more than EPA guideline(4 pCi/L). Some results of section analysis which was surveyed in the fault zone of Kyungju and Gapyung area confirmed the existence of fault-associated radon anomalies with a meaning of radon risk zone.

  • PDF

Soil-to-Plant Transfer Coefficients of Mn-54, Co-6O, Zn-65 and Cs-137 for Rice, Soybean and Vegetalbles (벼, 콩 및 채소류에 대한 Mn-54, Co-60, Zn-65, Cs-137의 토양-작물체간 전이계수)

  • Choi, Yong-Ho;Kim, Kug-Chan;Lee, Chang-Woo;Lee, Kang-Suk;Lee, Jeong-Ho;Pak, Chan-Kirl;Cho, Yong-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.55-65
    • /
    • 1991
  • Soil-to-plant transfer coefficients of Mn-54, Co-60, Zn-65, and Cs-137 were estimated for the edible parts of the rice, soybean, lettuce, carrot, and squash grown in different soils by radiotracer uptake experiments using pot cultures. The transfer coefficients of radionuclides were in the order of Zn-65 > Mn-54 > Cs-137 > Co-60 in most of the cases studied. The coefficients for soybean were roughly an order of magnitude higher than those for rice. Among vegetables, lettuce mostly showed the highest value and squash, the lowest. In the strongly acidic soils, transfer coefficients were much higher than in the moderately acidic soils. From the data obtained. crop-specific transfer coefficients of the four nuclides were proposed for the use in Korean food-chain radiation dose assessment.

  • PDF

Uptake of the Residues of the Herbicide Bentazon in Soil by Soybean and Radish (토양중(土壤中) 제초제(除草劑) Bentazon 잔류물(殘留物)의 콩과 무우에 의한 흡수(吸收))

  • Lee, Jae-Koo;Cheon, Sam-Yeong;Kyung, Kee-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • In order to clarify how much of the residues of Bentazon could be taken up by crops, soybean and radish were grown for 28 days in soils containing freshly treated $^{14}C-Bentazon$ and non-extractable soil-hound residues of $^{14}C-Bentazon.$ The results obtained are summarized as follows. 1. $^{14}CO_2$ evolution from $^{14}C$-Bentazon during the 6-month pre-incubation in soil was 14.79% relative to the applied radioactivity. 2. Mineralization of ^$^{14}C$-Bentazon in soil to $^{14}CO_2$ during 28 days of crop growing was much higher in the freshly treated soil than in the bound soil, and much higher in radish than in soybean. 3. The amounts of $^{14}C-Bentazon$ and its metabolites absorbed by soybean and radish were 45.41 and 21.48%, respectively, in freshly treated soil, whereas those were 3.92 and 1.23% in bound soil, respectively. The translocation ratios of radioactivity .from the root to the shoot were much higher in radish than in soybean, remarkably. 4. The uptake ratios of the freshly treated $^{14}C-Bentazon$ to the bound $^{14}C-Bentazon$ by soybean and radish were 12 : 1 and 17 : 1, respectively. 5. It was well verified that the presence of crops enhanced the mineralization to $^{14}CO_2$ and the transformation to polar metabolites of Bentazon.

  • PDF

Cesium Radioisotope Measurement Method for Environmental Soil by Ammonium Molybdophosphate (환경토양에서 몰리브도인산 암모늄을 이용한 세슘 동위원소 평가방법)

  • Choe, Yeong-hun;Seo, Yang Gon
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.122-131
    • /
    • 2016
  • Caesium radioisotopes, 134Cs and 137Cs which come from the atmospheric nuclear tests and discharges from nuclear power plants, are very important to study artificial radioactivity. In this work, in order to lower the minimum detection activity (MDA) we investigated environmental radioactivity according to the Environment Measurement Laboratory procedure by 137Cs and 134Cs which is similar to chemical and environmental behaviors of 137Cs. The environmental soils in high mountain areas near nuclear power plant were collected, and an Ammonium Molybdophosphate (AMP) precipitation method, which showed high selectivity toward Cs+ ions, was applied to chemically extract and concentrate Caesium radioisotopes. Radioactivity was estimated by a gamma-ray spectrometry. In gamma energy spectrum, with an increasing of 40K radioactivity, it increased the MDA of 134Cs and 137Cs. Therefore, if the natural radionuclides were removed from the soil samples, the MDA of Caesium may be reduced, and the contents of 137Cs of in the environmental soils can effectively be estimated. In the standard soil sample of Korea Institute of Nuclear Safety, radioactivity of 40K was removed more than 84% on average, and the MDA of 134Cs was reduced 2 times. The content of 137Cs was recovered over 84%. On the other hand, in environmental soils, AMP precipitation method showed removal ratio of 40K up to 180 times, which reduced the MDA about 5 times smaller than those of Direct method. 137Cs recovery ratio showed from 54.54% to 70.06%. When considering the MDA and recovery ratio, AMP precipitation method is effective for detection of Caesium radioisotopes in low concentration.

Distribution of Radioactivities of $^{226,228}Ra,\;^{137}Cs$ and $^{40}K$ in Soil in Busan Area (부산지역 토양의 $^{226,228}Ra,\;^{137}Cs$$^{40}K$ 방사능 분포)

  • Seo, Bum-Kyoung;Sung, Jung-Wook;Kim, Hyun-Duck;Lee, Dae-Won
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.441-445
    • /
    • 2001
  • In this work we investigated distribution of the natural and artificial radioactive nuclides and level of the regional background in soil in Busan. For 45 points, the environmental radioactivity concentration of Busan surface soil is $14.38{\sim}57.03\;(mean\;:\;33.95)\;Bq{\cdot}kg^{-1}$ for $^{226}Ra,\;2.41{\sim}86.58\;(mean\;:\;51.08)\;Bq{\cdot}kg^{-1}$ for $^{228}Ra,\;223.64{\sim}1332.30\;(mean\;668.51)\;Bq{\cdot}kg^{-1}$ for $^{40}K$ and $<0.33{\sim}33.37\;(mean:13.74) Bq{\cdot}kg^{-1}$ for $^{137}Cs$. Also, in order to investigate vertical distribution for radioactivity, we examined radioactive concentration with mountain height. But there was no correlation between radiaoactivity distribution and mountain height. The $^{226}Ra/^{228}Ra$ and $^{226}Ra/^{40}K$ concentration ratios were $0.68{\pm}19 %$ and $0.06{\pm}34%$, respectively.

  • PDF

Evaluation of Separation Distance from the Temporary Storage Facility for Decontamination Waste to Ensure Public Radiological Safety after Fukushima Nuclear Power Plant Accident (후쿠시마 원전 사고 이후 일반인의 방사선학적 안전성 확보를 위한 제염폐기물 임시저장시설 이격거리 평가)

  • Kim, Min Jun;Go, A Ra;Kim, Kwang Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.201-209
    • /
    • 2016
  • The object of this study was to evaluate the separation distance from a temporary storage facility satisfying the dose criteria. The calculation of ambient dose rates took into account cover soil thickness, facility size, and facility type by using MCNPX code. Shielding effects of cover soil were 68.9%, 96.9% and 99.7% at 10 cm, 30 cm and 50 cm respectively. The on-ground type of storage facility had the highest ambient dose rate, followed by the semi-ground type and the underground type. The ambient dose rate did not vary with facility size (except $5{\times}5{\times}2m\;size$) due to the self-shielding of decontamination waste in temporary storage. The separation distances without cover soil for a $50{\times}50{\times}2m\;size$ facility were evaluated as 14 m (minimum radioactivity concentration), 33 m (most probably radioactivity concentration), and 57 m (maximum radioactivity concentration) for on-ground storage type, 9 m, 24 m, and 45 m for semi-underground storage type, and 6 m, 16 m, and 31 m for underground storage type.

Microbial Degradation of $^{14}C-2$, 6-Diethylaniline in Soil and in Pure Culture ($^{14}C-2$, 6-Diethylaniline의 토양미생물에 의한 분해)

  • Lee, Jae-Koo;Ryu, In-Soo
    • Applied Biological Chemistry
    • /
    • v.25 no.3
    • /
    • pp.126-134
    • /
    • 1982
  • When $^{14}C-2$, 6-Diethylaniline (2, 6-DEA) was incubated aerobically in soil, $^{14}CO_2$ evolved from non-sterile soil A and B was 6.5 and 10.1%, respectively, in the 21st week. Methanol could extract 3.1 and 13.5% of the radioactivity from soil A and B, respectively, 2, 6-Diethylacetanilide was detected as a degradation product in soil. Chaetomium globosum produced 2, 6-diethyl-p-benzoquinone as a degradation product in pure culture. A possible pathway was proposed to include p-hydroxylation of 2, 6-DEA, formation of quinoneimine, and the subsequent hydrolysis with the release of ammonia.

  • PDF

A Preliminary Study on Soil-Gas 222Rn Concentrations Depending on Different Bedrock Geology (기반암에 따른 토양가스 222Rn농도의 분포에 관한 기초연구)

  • Je, Hyun-Kuk;Kang, Chigu;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.415-424
    • /
    • 1998
  • In order to investigate soil-gas $^{222}Rn$ concentrations, Kwanak Campus (Seoul National University), Boeun (Choong-buk) and Gapyung (Kyonggi) areas were selected and classified depending on their base rock types. Radon risk indices of these study areas decrease in the order of Gapyung>Kwanak Campus>Boeun areas, and in the order of rock type as banded gneiss>granite gneiss>granite>black slate-shale>mica schist>shale-lirnestone>phyllite-schist. Radon emanating trends with water content and grain size of soils were assessed by modified Morse 3 min. method. Radon emanation increases with the increase of water content in soils which is lower than 6~16 wt.%, and decreases in the range of higher than 6-16 wt. %. It shows that Rn emanation increases with the decrease of soil grain size. Radioactivity analysis of radionuclides of 238U series in some soil samples shows that radioactive disequilibrium state between $^{226}Ra$ and $^{238}U$ exists owing to different geochemical behavior of each radionuclide, and, it is necessary to carry out radioactive isotope geochemical approach for soil-gas $^{222}Rn$ study.

  • PDF