• 제목/요약/키워드: Soil Radioactivity

검색결과 103건 처리시간 0.026초

원전주변 지역 식물의 방사능 오탁에 관한 연구 - 해송과 아왜나무를 대상으로 - (Study on Radioactive Contamination of Plant Nearby Nuclear Power Plant - Focused on Pinus thunbergii Parl. and Viburnum awabuki K. KOCH -)

  • 강태호;조홍하;정진욱;국성도
    • 한국환경복원기술학회지
    • /
    • 제16권3호
    • /
    • pp.55-62
    • /
    • 2013
  • Generally, the radioactivity from NPP(Nuclear Power Plants) operation can be released below 3% of DRLs(Derived Release Limits) to environment. It was tried to understand which plant was efficient for absorbing radioactivity in this study. Pinus thunbergii Parl. and Viburnum awabuki K. KOCH were analyzed for radioisotope absorption. The samples were collected at three different locations depending on the distance from NPP at the vicinity 10km away, and 30km away. Gamma radionuclide was not detected from the samples, which means that the direct transition into the plant was not significant. Meanwhile, the very low level of radioactive tritium was detected in the samples. One remark was that every plant has different ability for tritium absorption. These results are expected to be applied to propagation and transplanting in radioactively contaminated area or reducing radioactivity in the soil and water near the plants.

대두식물에 의한 스트론튬-90의 흡수 및 이행 (The Uptake and Translocation of Strontium-90 in Soybean Plants)

  • Koon-Ja Lee;Jeong-Ho Lee;Su-Rae Lee
    • Nuclear Engineering and Technology
    • /
    • 제15권2호
    • /
    • pp.110-116
    • /
    • 1983
  • 육상식물인 대두(Glycine max)에 있어서 Sr-90의 흡수 및 이행과정을 온실조건하에서 실험하여 다음과 같은 결과를 얻었다. 엽면처리한 Sr-90은 식물체의 다른 부위로 일부분만이 이행하였고 대부분은 잎에 그대로 잔류하여 낙엽에 의한 토양오염의 원인이 되고 있었다. 토양처리한 Sr-90은 뿌리를 통하여 흡수된 다음 잎, 줄기, 종자, 뿌리등 각 부위로 널리 분포되는데 식물의 생육단계에 따라 그 패턴이 달리 나타났다.

  • PDF

부산지역 토양 내 천연방사성핵종 분석 및 유효선량율 평가 (Evaluation of Radiation effective dose by Naturally Radionuclides in the Soil of Busan)

  • 김정훈;김창수;임창선
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.3658-3666
    • /
    • 2014
  • 본 논문에서는 대한민국의 제2의 도시인 부산지역의 일반토양을 대상으로 천연방사성핵종인 $^{238}U$, $^{232}Th$, $^{40}K$을 분석하고 이를 바탕으로 일반토양에 의한 거주민의 방사선피폭을 평가하였다. 측정방법으로는 부산지역의 토양 내 천연 방사성 핵종을 정밀 분석하기 위하여 16개의 행정구역을 중심으로 각 지역에서 세 개의 지점을 격자구조로 분리하였으며 이후 총 48개의 토양 시료를 2012년 7월부터 2013년 4월까지 채취하였다. 토양 중 $^{238}U$, $^{232}Th$는 ICP-MS를 사용하여 방사능 농도를 분석하고, $^{40}K$는 감마선 분석 검출기인 HpGe 검출기를 사용하여 방사능 농도를 분석하였다. 이 후 이를 바탕으로 동아시아 지역의 방사능 농도와 비교해 본 결과 $^{238}U$ 핵종은 우리나라가 평균보다 낮은 농도를 나타낸 반면 $^{232}Th$, $^{40}K$핵종은 높은 값을 나타냈다. 이는 한국의 지질대가 천연방사성핵종이 많이 포함되어 있는 화강암지대가 많기 때문이라 판단된다.

원자력 시설 주변 환경 감시를 위한 토양 중 우라늄 동위원소 신속 분석법 확립 (Establishing of a rapid analytical method on uranium isotopic ratios for the environmental monitoring around nuclear facilities)

  • 박지영;임종명;이현우;이완로
    • 분석과학
    • /
    • 제31권3호
    • /
    • pp.134-142
    • /
    • 2018
  • The uranium isotopic ratio in environmental samples around nuclear facilities is important because it reveals information regarding illegal activities or anthropogenic pollution. Determination of uranium isotopes, however, is a challenging task requiring much labor and time because of the complex separation procedures and lengthy process. In this study, a rapid determination method for uranium isotopes in environmental samples was developed using. The sample was completely decomposed using the alkali fusion method. The separation procedure using extraction chromatography (UTEVA) was simplified in a single step without any further removal process for Si and major matrix elements. The established method can be completed within 3 h from sample dissolution to ICP-MS measurement. Most matrix elements and uranium isotopes in the soil samples were well separated and purified. Five types of were used to assess the method's accuracy and precision for a rapid uranium analysis method. The analytical accuracy for all CRM samples ranged from 95.1 % to 97.8 %, and the relative standard deviation was below 3.9 %. From the analytical results, one may draw conclusions that the evaluated method for uranium isotopes using alkali-fusion, the extraction chromatography process, and ICP-MS measurements is fast and fairly reliable owing to its recovering efficiencies. Thus, it is expected that the evaluated method can contribute to the improvement of environmental monitoring ability.

Environmental Radioactivity and High Incidence Rates of Stomach and Esophagus Cancer in the Van Lake Region: A Causal Relationship?

  • Akan, Zafer;Baskurt, Busranur;Asliyuksek, Hizir;Kam, Erol;Yilmaz, Ahmet;Yuksel, Mehmet Bilgehan;Biyik, Recep;Esen, Ramazan;Koca, Dogan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.375-380
    • /
    • 2014
  • This study examined the incidence rates of cancer cases (averages for 2006-2010) and relationships with environmental radioactivity levels. Soil and water samples were collected from provincial and district centers of Van city and the outdoor gamma doses were determined using a portable gamma scintillation detector. Gross alpha and beta, (226)Ra, (232)Th, and (40)K activities were measured in both tap water and soil samples. Although high rates of stomach and esophagus cancers have been reported previously in Van the underlying reasons have not hitherto been defined. Incidences of cancers were highest in the Gurpmar (326.0) and Ozalp (377.1) counties (p<0.001). As to the results of the gross alpha and gross beta radioactivity measurements in the drinking water, these two counties also had high beta radionuclide levels: Gurpmar ($140mBq/dm^3$) and Ozalp ($206mBq/dm^3$). Even if within the normal range, a relation between the higher rate of the incidence of stomach and esophagus cancers with that of the higher rate of beta radionuclide activity was clear. On Spearman correlation analysis, the relation between higher beta radionuclide levels and cancer incidence was found to be statistically significant (p<0.01). According to the results of the analysis, Van residents receive an average 1.86 mSv/y annual dose from outdoor gamma radiation, ingestion of radionuclides in the drinking water, and indoor $^{222}Rn$ activity. Moreover, gross alpha and beta activities were found to be extremely high in all of the lakes around the city of Van, Turkey. Further investigations with long-term detailed environmental radiation measurements are needed regarding the relationship between cancer cases and environmental radioactivity in the city of Van.

Radiation Dose Assessment Model for Terrestrial Flora and Fauna and Its Application to the Environment near Fukushima Accident

  • Keum, Dong-Kwon;Jeong, Hyojoon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • 제45권1호
    • /
    • pp.16-25
    • /
    • 2020
  • Background: To investigate radiological effects on biota, it is necessary to assess radiation dose for flora and fauna living in a terrestrial ecosystem. This paper presents a dynamic model to assess radioactivity concentration and radiation dose of terrestrial flora and fauna after a nuclear accident. Materials and Methods: Litter, organic soil, mineral soil, trees, wild crops, herbivores, omnivores, and carnivores are considered the major components of a terrestrial ecosystem. The model considers the physicochemical and biological processes of interception, weathering, decomposition of litter, percolation, root uptake, leaching, radioactive decay, and biological loss of animals. The predictive capability of the model was investigated by comparison of its predictions with field data for biota measured in the Fukushima forest area after the Fukushima nuclear accident. Results and Discussion: The predicted radioactive cesium inventories for trees agreed well with those for evergreens and deciduous trees sampled in the Fukushima area. The predicted temporal radioactivity concentrations for animals were within the range of the measured radioactivity concentrations of deer, wild boars, and black bears. The radiation dose for the animals were, for the whole simulation time, estimated to be much smaller than the lower limit (0.1 mGy·d-1) of the derived consideration reference level given by the International Commission on Radiological Protection for terrestrial flora and fauna. This suggested that the radiation effect of the accident on the biota in the Fukushima forest would be insignificant. Conclusion: The present dynamic model can be used effectively to investigate the radiological risk to terrestrial ecosystems following a nuclear accident.

토양중 [$^{14}C$Carbofuran의 분해 및 비추출성 잔류분의 특성 (Degradation of [$^{14}C$]Carbofuran in Soils and Characterization of its Nonextractable Residues)

  • 박창규;이영득
    • Applied Biological Chemistry
    • /
    • 제38권3호
    • /
    • pp.263-268
    • /
    • 1995
  • 침투성 살충제의 일종인 carbofuran을 대상으로 수분조건을 달리한 논과 밭상태의 토양중 분해경로상 차이점과 비추출성 잔류분의 특성을 비교, 검토하였다. 침수 및 습윤상태로 수분조건을 조절한 토양에 [$3-^{14}C$]Carbofuran을 정상적 포장살포약량인 1.0mg/kg (87.8kBq/50g 토양)수준으로 처리하고 경시적으로 특성별 방사능과 분해산물의 분포를 조사하였다. 토양중 carbofuran의 초기분해경로는 수분조건에 따라 차이를 보여 침수상태에서는 가수분해가 우세하였던 반면 습윤상태에서는 산화가 주된 초기분해반응으로 나타났다. 또한 분해속도에 있어서도 토양중 반감기가 각각 34일 및 50일로 수분조건에 따라 차이를 보였다. 토양중에 처리한 carbofuran 및 분해산물중 상당량이 비추출성으로 전환, 처리 60일후 $24{\sim}39%$에 달하였으며 주로 토양유기물에 분포하였다. 비추출성 방사능의 토양유기물중 분포를 조사한 결과 처리후 시간이 경과함에 따라 carbofuran 및 그 분해산물들은 fulvic acid, humic acid 및 humin분획에 혼입되었으며 겔여과크로마토그래피에 의하여 분자량 $10^4$ 이상의 혼입고분자화합물이 존재함을 밝혔다.

  • PDF

The status of NORMs in natural environment adjacent to the Rooppur nuclear power plant of Bangladesh

  • Haydar, Md Abu;Hasan, Md Mehade;Jahan, Imrose;Fatema, Kanij;Ali, Md Idris;Paul, Debasish;Khandaker, Mayeen Uddin
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4114-4121
    • /
    • 2021
  • The Rooppur Nuclear Power Plant (RNPP), the first nuclear power plant in Bangladesh with a capacity of 2.4 GWe, is under construction on the bank of the river Padma, at Rooppur in Bangladesh. Measurement of background radioactivity in the natural environment adjacent to RNPP finds great importance for future perspectives. Soil and sediment samples collected from upstream and downstream positions of the Padma River (adjacent to RNPP) were collected and analyzed by HPGe gamma-ray spectrometry for primordial radionuclides. The average activity concentrations (in Bqkg-1) of 226Ra, 232Th and 40K radionuclides in soil samples were found to be 44.99 ± 3.89, 66.28 ± 6.55 and 553 ± 82.17 respectively. Respective values in sediment samples were found to be 44.59 ± 4.58, 67.64 ± 7.93, 782 ± 108. Relevant radiation hazard indices and dosimetric parameters were calculated and compared with the world average data recommended by US-EPA. Analytical results show non-negligible radiation hazards to the surrounding populace. Measured data will be useful to monitor any change of background radioactivity in the surrounding environment of RNPP following its operation for the generation of nuclear energy.

Activity concentrations and radiological hazard assessments of 226Ra, 232Th, 40K, and 137Cs in soil samples obtained from the Dongnam Institute of Radiological & Medical Science, Korea

  • Jieun Lee;HyoJin Kim;Yong Uk Kye; Dong Yeon Lee;Wol Soon Jo;Chang Geun Lee;Jeung Kee Kim;Jeong-Hwa Baek;Yeong-Rok Kang
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2388-2394
    • /
    • 2023
  • The radioactivity concentration of environmental radionuclides was analyzed for soil and sand at eight locations within a radius of 255 m centered on the Dongnam Institute of Radiological & Medical Science (DIRAMS), Korea. The average activity concentrations of 40K, 137Cs, 226Ra, and 232Th were 661.1 Bq/kg-dry, 0.9 Bq/kg-dry, 21.9 Bq/kg-dry, and 11.1 Bq/kg-dry, respectively. The activity of 40K and 137Cs was lower than the 3-year (2017-2019) average reported by the Korea Institute of Nuclear Safety, respectively. Due to the nature of granite-rich soil, the radioactivity of 40K was 0.6-fold higher than in other countries, while 137Cs was in the normal fluctuation range (15-30 Bq/kg-dry) of the concentration of radioactive fallout from nuclear tests. The activity of 226Ra and 232Th was lower than in Korean soils reported by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The average activity concentrations of 232Th and 40K for the soil and sand samples from DIRAMS were within the range specified by UNSCEAR in 2000. The radium equivalent activity and internal and external hazard index values were below the recommended limits (1 mSv/y). These radionuclide concentration (226Ra, 232Th, 40K, and 137Cs) data can be used for regional environmental monitoring and ecological impact assessments of nuclear power plant accidents.

Assessment of Environmental Radioactivity Surveillance Results around Korean Nuclear Power Utilization Facilities in 2017

  • Kim, Cheol-Su;Lee, Sang-Kuk;Lee, Dong-Myung;Choi, Seok-Won
    • Journal of Radiation Protection and Research
    • /
    • 제44권3호
    • /
    • pp.118-126
    • /
    • 2019
  • Background: Government conducts environmental radioactivity surveillance for verification purpose around nuclear facilities based on the Nuclear Safety Law and issues a surveillance report every year. This study aims to evaluate the short and the long-term fluctuation of radionuclides detected above MDC and their origins using concentration ratios between these radionuclides. Materials and Methods: Sample media for verification surveillance are air, rainwater, groundwater, soil, and milk for terrestrial samples, and seawater, marine sediment, fish, and seaweed for marine samples. Gamma-emitting radionuclides including $^{137}Cs$, $^{90}Sr$, Pu, $^3H$, and $^{14}C$ are evaluated in these samples. Results and Discussion: According to the result of the environmental radioactivity verification surveillance in the vicinity of nuclear power facilities in 2017, the anthropogenic radionuclides were not detected in most of the environmental samples except for the detection of a trace level of $^{137}Cs$, $^{90}Sr$, Pu, and $^{131}I$ in some samples. Radioactivity concentration ratios between the anthropogenic radionuclides ($^{137}Cs/^{90}Sr$, $^{137}Cs/^{239+240}Pu$, $^{90}Sr/^{239+240}Pu$) were similar to those reported in the environmental samples, which were affected by the global fallout of the past nuclear weapon test, and Pu atomic ratios ($^{240}Pu/^{239}Pu$) in the terrestrial sample and marine sample showed significant differences due to the different input pathway and the Pu source. Radioactive iodine ($^{131}I$) was detected at the range of < $5.6-190mBq{\cdot}kg-fresh^{-1}$ in the gulfweed and sea trumpet collected from the area of Kori and Wolsong intake and discharge. A high level of $^3H$ was observed in the air (Sangbong: $0.688{\pm}0.841Bq{\cdot}m^{-3}$) and the precipitation (Meteorology Post: $199{\pm}126Bq{\cdot}L^{-1}$) samples of the Wolsong nuclear power plant (NPP). $^3H$ concentration in the precipitation and pine needle samples showed typical variation pattern with the distance and the wind direction from the stack due to the gaseous release of $^3H$ in Wolsong NPP. Conclusion: Except for the detection of a trace level of $^{137}Cs$, $^{90}Sr$, Pu, and $^{131}I$ in some samples, anthropogenic radionuclides were below MDC in most of the environmental samples. Overall, no unusual radionuclides and abnormal concentration were detected in the 2017's surveillance result for verification. This research will be available in the assessment of environment around nuclear facilities in the event of radioactive material release.