• Title/Summary/Keyword: Soil Pollution Index

Search Result 97, Processing Time 0.021 seconds

Fractionation and Pollution Index of Heavy Metals in the Sangdong Tungsten Mine Tailings (광미에 존재하는 중금속의 분획화와 오염도 평가)

  • Yang, Jae-E.;Kim, Hee-Joung;Jun, Sang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2001
  • Enormous volumes of mining wastes from the abandoned and closed mines are disposed without a proper treatment in the upper Okdong River basin at Southeastern part of Kangwon Province. Erosion of these wastes contaminates soil, surface water, and sediments with heavy metals. Objectives of this research were to fractionate heavy metals in the mine tailing stored in the Sangdong Tungsten tailing dams and to assess the potential pollution index of each metal fraction. Tailing samples were collected from tailing dams at different depth and analyzed for physical and chemical properties. pH of tailings ranged from 7.3 to 7.9. Contents of total N and organic matter were in the ranges of 3.2~5.5%, and 1.3~9.1%, respectively. Heavy metals in the tailings were higher in the newly constructed tailing dam than those in the old dam. Total concentrations of metals in the tailings were in the orders of Zn > Cu > Pb > Ni > Cd, exceeded the corrective action level of the Soil Environment Conservation Law and higher than the natural abundance levels reported from uncontaminated soils. Relative distribution of heavy metal fractions was residual > organic > reducible > carbonate > adsorbed, reversing the degree of metal bioavailability. Mobile fractions of metals were relatively small compared to the total concentrations. Distribution of metals in the tailing dam profiles was metal specific. Concentrations of Cu at the surface of tailing dams were higher than those at the bottom. Pollution index (PI) values of each fraction of metals were ranged from 4.27 to 8.51 based on total concentrations. PI values of mobile fractions were lower than those of immobile fractions. Results on metal fractions and PI values of the tailing samples indicate that tailing samples were contaminated with heavy metals and had potential to cause a detrimental effects on soil and water environment in the lower part of the stream. A prompt countermeasure to prevent surface of tailings in the dams from water and wind erosions is urgently needed.

  • PDF

Development of Performance Evaluation Model for Optimal Soil Remediation Technology Selection (토양오염 최적정화기술 선정을 위한 성능평가모델 개발)

  • Kim, Sang-Tae;Koh, Woo-Chan;Lee, Seung-Woo;Kim, Heung-Rae
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.13-22
    • /
    • 2015
  • In this study, we have developed the performance evaluation model for the optimal soil remediation technology selection. Performance evaluation model is composed in the evaluation of two steps. In the first stage, the candidate technologies are derived according to the conditions of drilling, type and concentration of pollutants, and the saturated/unsaturated of target site. In the second stage, each individual candidate technology is evaluated by performance evaluation model. The performance evaluation model has 5 groups of evaluation items and 12 evaluation items which have their own evaluation index and their own weights through the AHP approach surveying 40 experts. From the case study of actual design cases, the applicability of the performance evaluation model was confirmed.

Evaluation of Meymeh Aquifer vulnerability to nitrate pollution by GIS and statistical methods

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Increasing the concentration of nitrate ions in the soil solution and then leaching it to underground aquifers increases the concentration of nitrate in the water, and can cause many health and ecological problems. This study was conducted to evaluate the vulnerability of Meymeh aquifer to nitrate pollution. In this research, sampling of 10 wells was performed according to standard sampling principles and analyzed in the laboratory by spectrophotometric method, then; the nitrate concentration zonation map was drawn by using intermediate models. In the drastic model, the effective parameters for assessing the vulnerability of groundwater aquifers, including the depth of ground water, pure feeding, aquifer environment, soil type, topography slope, non-saturated area and hydraulic conductivity. Which were prepared in the form of seven layers in the ARC GIS software, and by weighting and ranking and integrating these seven layers, the final map of groundwater vulnerability to contamination was prepared. Drastic index estimated for the region between 75-128. For verification of the model, nitrate concentration data in groundwater of the region were used, which showed a relative correlation between the concentration of nitrate and the prepared version of the model. A combination of two vulnerability map and nitrate concentration zonation was provided a qualitative aquifer classification map. According to this map, most of the study areas are within safe and low risk, and only a small portion of the Meymeh Aquifer, which has a nitrate concentration of more than 50 mg / L in groundwater, is classified in a hazardous area.

The Analysis of Evergreen Tree Area Using UAV-based Vegetation Index (UAV 기반 식생지수를 활용한 상록수 분포면적 분석)

  • Lee, Geun-Sang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • The decrease of green space according to the urbanization has caused many environmental problems as the destruction of habitat, air pollution, heat island effect. With interest growing in natural view recently, proper management of evergreen tree which is lived even the winter season has been on the rise importantly. This study analyzed the distribution area of evergreen tree using vegetation index based on unmanned aerial vehicle (UAV). Firstly, RGB and NIR+RG camera were loaded in fixed-wing UAV and image mosaic was achieved using GCPs based on Pix4d SW. And normalized differences vegetation index (NDVI) and soil adjusted vegetation index (SAVI) was calculated by band math function from acquired ortho mosaic image. validation points were applied to evaluate accuracy of the distribution of evergreen tree for each range value and analysis showed that kappa coefficient marked the highest as 0.822 and 0.816 respectively in "NDVI > 0.5" and "SAVI > 0.7". The area of evergreen tree in "NDVI > 0.5" and "SAVI > 0.7" was $11,824m^2$ and $15,648m^2$ respectively, that was ratio of 4.8% and 6.3% compared to total area. It was judged that UAV could supply the latest and high resolution information to vegetation works as urban environment, air pollution, climate change, and heat island effect.

An Introductory Research for Development of Soil Ecological Risk Assessment in Korea (토양생태 위해성평가 제도 국내 도입방안 연구)

  • An, Youn-Joo;Kim, Shin Woong;Moon, Jongmin;Jeong, Seung-Woo;Kim, Rog-Young;Yoon, Jeong-Ki;Kim, Tae-Seung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.348-355
    • /
    • 2017
  • Human activities have resulted in soil pollution problems to us. Human and ecological risk assessment have been suggested as an efficient environmental management strategy for protecting human and ecosystems from soil pollution. However, Korean environmental policy is currently focused on human protection, and fundamental researches for ecology protection are required for institutional frameworks. In this study, we developed a schematic frame of Korean soil ecological risk assessment, and suggested the basic information for its application. This study suggested a soil ecological risk assessment scheme consisting of 4 steps for derivation of Predicted-No-Effect-Concentration (PNEC): 1) ecotoxicity data collection and reliability determination, 2) data standardization, 3) evaluation of data completeness for PNEC calculation, and 4) determination of ecological-risk. The reliability determination of ecotoxicity data was performed using Reliability Index (RI), and the classification of domestic species, acute/chronic, toxicity endpoint, and soil properties was used for data cataloging. The PNEC calculation methodology was determined as low-reliability, middle-reliability, and high-reliability according to their quantitative and qualitative levels of ecotoxicity data. This study would be the introductory plan research for establishment of Korean soil ecological risk assessment, and it can be a fundamental framework to further develop guidelines of Korean environmental regulation.

Development of Composite Soil Quality Index Evaluation System based on Web GIS (Web GIS기반의 복합적 토양 질 평가 시스템 개발)

  • Sung, Yunsoo;Yang, Jae E;Kim, Sung Chul;Ryu, Jichul;Jang, Wonseok;Kum, Donghyuk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.693-699
    • /
    • 2015
  • It has been known that torrential rainfall events have been occurring worldwide due to climate change. The accelerated soil erosion has caused negative impacts on water quality and ecosystem of receiving waterbodies. Since soil security issues have been arising in various areas of the world, intensive interests have been given to topsoil management in Korea. Thus in this study, Web GIS-based computing system of physical, chemical, and biological topsoil quality indices were developed. In this study, five soil quality maps at national scale and top soil erosion potential were prepared for evaluation of soil quality based on soil erosion potential. For this system, the open source Web GIS engine, OpenGeo, was used as core engine of the system. With this system, decision makers or related personnel in areas of soil erosion Best Management Practices (BMPs) would be able to find the most appropriate soil erosion BMPs based on soil erosion potential and soil quality at the area of interest. The Web GIS system would be efficiently used in decision making processes because of ease-of-use interface and scientific data used in this system. This Web GIS system would be efficiently used because this system could provide scientific knowledge to decision makers or stakeholders. Currently various BMP database are being built to be used as a decision support system in topsoil management and topsoil quality areas.

A Study of Improvement for the Prediction of Groundwater Pollution in Rural Area: Application in Keumsan, Korea (농촌지역 지하수의 오염 예측 방법 개선방안 연구: 충남 금산 지역에의 적용)

  • Cheong, Beom-Keun;Chae, Gi-Tak;Koh, Dong-Chan;Ko, Kyung-Seok;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.40-53
    • /
    • 2008
  • Groundwater pollution prediction methods have been developed to plan the sustainable groundwater usage and protection from potential pollution in many countries. DRASTIC established by US EPA is the most widely used groundwater vulnerability mapping method. However, the DRASTIC showed limitation in predicting the groundwater contamination because the DRASTIC method is designed to embrace only hydrogeologic factors. Therefore, in this study, three different methods were applied to improve a groundwater pollution prediction method: US EPA DRASTIC, Modified-DRASTIC suggested by Panagopoulos et al. (2006), and LSDG (Land use, Soil drainage, Depth to water, Geology) proposed by Rupert (1999). The Modified-DRASTIC is the modified version of the DRASTIC in terms of the rating scales and the weighting coefficients. The rating scales of each factor were calculated by the statistical comparison of nitrate concentrations in each class using the Wilcoxon rank-sum test; while the weighting coefficients were modified by the statistical correlation of each parameter to nitrate concentrations using the Spearman's rho test. The LSDG is a simple rating method using four factors such as Land use, Soil drainage, Depth to water, and Geology. Classes in each factor are compared by the Wilcoxon rank-sum test which gives a different rating to each class if the nitrate concentration in the class is significantly different. A database of nitrate concentrations in groundwaters from 149 wells was built in Keumsan area. Application of three different methods for assessing the groundwater pollution potential resulted that the prediction which was represented by a correlation (r) between each index and nitrate was improved from the EPA DRASTIC (r = 0.058) to the modified rating (r = 0.245), to the modified rating and weights (r = 0.400), and to the LSDG (r = 0.415), respectively. The LSDG seemed appropriate to predict the groundwater pollution in that it contained land use as a factor of the groundwater pollution sources and the rating of each class was defined by a real pollution nitrate concentration.

A Novel Method to Assess the Aerobic Gasoline Degradation by Indigenous Soil Microbial Community using Microbial Diversity Information (토양 미생물 다양성 지표를 이용한 토착 미생물 군집의 호기성 가솔린 오염분해능력 평가 기법 개발 연구)

  • Hwang, Seoyun;Lee, Nari;Kwon, Hyeji;Park, Joonhong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.839-846
    • /
    • 2016
  • Since oil leakage is one of the most common nonpoint pollution sources that contaminate soil in Korea, the capacity of soil microbial community for degrading petroleum hydrocarbons should be considered to assess the functional value of soil resource. However, conventional methods (e.g., microcosm experiments) to assess the remediation capacity of soil microbial community are costly and time-consuming to cover large area. The present study suggests a new approach to assess the toluene remediation capacity of soil microbial community using a microbial diversity index, which is a simpler detection method than measuring degradation rate. The results showed that Shannon index of microbial community were correlated with specific degradation rate ($V_{max}$), a degradation factor. Subsequently, a correlation equation was generated and applied to Michaelis-Menten kinetics. These results will be useful to conveniently assess the remediation capacity of soil microbial community and can be widely applied to diverse engineering fields including environment-friendly construction engineering fields.

Hydrogeochemistry of shallow groundwaters in western coastal area of Korea : A study on seawater mixing in coastal aquifers (서해 연안지역 천부지하수의 수리지구화학 : 연안 대수층의 해수 혼입에 관한 연구)

  • 박세창;윤성택;채기탁;이상규
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.63-77
    • /
    • 2002
  • Salinization is an important environmental problem encountered in coastal aquifers. In order to evaluate the salinization problem in the western coastal area of Korea, we have performed a regional hydrochemical study on shallow well groundwaters (N=229) collected within 10 km away from the coastline. The concentrations of analyzed solutes are very wide in range, suggesting that the hydrochemistry is controlled by several processes such as water-rock interaction, seawater mixing, and anthropogenic contamination. Based on the graphical interpretation of cumulative frequency curves for some hydrochemical parameters (esp., $Cl^{-}$ and ${NO_3}^-$), the collected water samples were grouped into two major populations (1) a background population whose chemistry is predominantly affected by water-rock interaction, and (2) an anomalous population which records the potential influences by either seawater mixing or anthropogenic pollution. The threshold values obtained are 34.7 mg/l for $Cl^{-}$ and 37.2 mg/l for ${NO_3}^-$, Using these two constituents, groundwaters were further grouped into four water types as follows (the numbers in parenthesis indicate the percentage of each type water) : (1) type 1 waters (38%) that are relatively poor in $Cl^{-}$ and ${NO_3}^-$, which may represent their relatively little contamination due to seawater mixing and anthropogenic pollution; (2) type 2 waters (21%) which are enriched in $Cl^{-}$, Indicating the considerable influence by seawater mixing; (3) ${NO_3}^-$-rich, type 3 waters (11%) which record significant anthropogenic pollution; and (4) type 4 waters (30%) enriched in both $Cl^{-}$ and ${NO_3}^-$, reflecting the effects of both seawater mixing and anthropogenic contamination. The results of the water type classification correspond well with the grouping on a Piper's diagram. On a Br x $10^4$versus Cl molar ratio diagram, most of type 2 waters are also plotted along or near the seawater mixing line. The discriminant analysis of hydrochemical data also shows that the classification of waters into four types are so realistic to adequately reflect the major process(es) proposed for the hydrochemical evolution of each water type. As a tool for evaluating the degree of seawater mixing, we propose a parameter called 'Seawater Mixing Index (S.M.I.)’ which is based on the concentrations of Na, Mg, Cl, and $SO_4$. All the type 1 and 3 waters have the S.M.I. values smaller than one, while type 2 and type 4 waters mostly have the values greater than 1. In the western coastal area of Korea, more than 21% of shallow groundwaters appear to be more or less affected by salinization process.

Contamination Characteristics of Heavy Metals in Indoor, Outdoor and Playground of Schools in the Gochang-Gun, Chonbuk Province of South Korea (전북 고창지역 학교 실내외 환경의 중금속 오염 특성)

  • Kim, Yong-Hwan;Chung, Duk-Ho;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.73-82
    • /
    • 2006
  • Dust samples were collected from 10 middle and high schools in the Gochang-Gun, Korea. Heavy metal concentrations were determined for the dry-deposited dusts from indoor and outdoor of classroom and playground of each sampling site. Concentrations of Cd, Cu, Pb and Zn in indoor's dusts were highly concentrated. Also concentrations of Cu, Ni, Pb and Zn in outdoor's dusts were highly concentrated. Concentrations of Cd, Cu and Zn in the dusts were much higher than the world average contents in soil and environmental orientation value. These levels are similar to those of the dust samples at middle schools and high schools located in Jeonju-city, Korea. Compared with concentrations of heavy metals in soils and dusts in Korea, the environment of indoor and outdoor of classroom is highly concentrated except for Cu, Zn. The concentrations of playground is less than that of residential dust and main road dust and playground in Jeonju-city. Playground dusts in 1 school exhibited the enhanced heavy metal pollution with a pollution index (Kloke, 1979) greater than 1.0, but indoor and outdoor dusts in 7 schools exhibited the enhanced heavy metal pollution with a pollution index (by Kloke) yester than 1.0.