• 제목/요약/키워드: Soil Physical and Hydraulic Properties properties

검색결과 57건 처리시간 0.015초

Decision of Available Soil Depth Based on Physical and Hydraulic Properties of Soils for Landscape Vegetation in Incheon International Airport

  • Jung, Yeong-Sang;Lee, Hyun-Il;Jung, Mun-Ho;Lee, Jeong-Ho;Kim, Jeong-Tae;Yang, Jae E
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.522-527
    • /
    • 2015
  • Decision of available soil depth based on soil physical and hydraulic properties for the $3^{rd}$ Landscape Vegetation Project in the Incheon International Airport was attempted. The soil samples were collected from the 8 sites at different depths, 0-20 and 20-60cm, for the three project fields, A, B, and C area. Physical and chemical properties including particle size distribution, organic matter content and electrical conductivity were analyzed. Hydrological properties including bulk density and water holding capacity at different water potential, -6 kPa, -10 kPa, -33 kPa, and -1500 kPa were calculated by SPAW model of Saxton and Rawls (2006), and air entry value was calculated by Campbell model (1985). Based on physical and hydrological limitation, feasibility and design criteria of soil depth for vegetation and landfill were recommended. Since the soil salinity of the soil in area A area was $19.18dS\;m^{-1}$ in top soil and $22.27dS\;m^{-1}$ in deep soil, respectively, landscape vegetation without amendment would not be possible on this area. Available soil depth required for vegetation was 2.51 m that would secure root zone water holding capacity, capillary fringe, and porosity. Available soil depth required for landscape vegetation of the B area soil was 1.51 m including capillary fringe 0.14 m and available depth for 10% porosity 1.35 m. The soils in this area were feasible for landscape vegetation. The soil in area C was feasible for bottom fill purpose only due to low water holding capacity.

Soil Physical and Hydraulic Properties over Terrace Adjacent Four Major Rivers

  • Lee, Kyo Suk;Lee, Jae Bong;Lee, Myoung Yun;Joo, Ri Na;Lee, Dong Sung;Chung, Doug Young
    • 한국토양비료학회지
    • /
    • 제49권3호
    • /
    • pp.235-241
    • /
    • 2016
  • The soil does not only serve as a medium for plant growth but also for engineering construction purposes. It is very weak in tension, very strong in compression and fails only by shearing. The behaviour of the soil under any form of loading and the interactions of the earth materials during and after any engineering construction work has a major influence on the success, economy and the safety of the work. Soils and their management have therefore become a broad social concern. A limitless variety of soil materials are encountered in both agronomy and engineering problems, varying from hard, dense, large pieces of rock through gravel, sand, silt and clay to organic deposits of soft compressible peat. All these materials may occur over a range of physical properties, such as water contents, texture, bulk density and strength of soils. Therefore, to deal properly with soils and soil materials in any case requires knowledge and understanding of these physical properties. The desired value of bulk density varies with the degree of stability required in construction. Bulk density is also used as an indicator of problems of root penetration,soil aeration and also water infiltration. This property is also used in foundation engineering problems. While not conforming to standard test procedures, this work attempts to add to the basic information on such important soil parameters as water content, bulk density.

경운토양의 물리적 특성변화를 고려한 Green And Ampt 매개변수의 추정 (Green and Ampt Parameter Estimation Considering Temporal Variation of Physical Properties on Tilled Soil)

  • 정하우;김성준
    • 한국농공학회지
    • /
    • 제33권2호
    • /
    • pp.120-129
    • /
    • 1991
  • This study refers to temporal variation of physical properties of tilled soil under natural rainfalls. Field measurements of porosity, average hydraulic conductivity and average capillary pressure head on a tilled soil were conducted by soil sampler and air-entry permeameter respectively at regular intervals after tillage. Temporal variation of these physical properties were analysed by cumulative rainfall energy since tillage. Field experiment was conducted on a sandy loam soil at Suwon durging April~July in 1989. The followings are a summary of this study results ; 1. Average porosity just after tillage was 0.548cm$^3$/cm$^3$. As cumulative rainfall energy were increased in 0.1070, 0.1755, 0.3849 J/cm$^2$, average porosity were decreased in 0.506, 0.4]95, 0.468m$^3$/cm$^3$ respectively. 2. Average hydraulic conductivity just after tillage was 45.42cm/hr. As cumulative rainfall energy were increased in 0.1755, 0.2466, 0.2978, 0.3849J/cm$^2$ average hydraulic conductivity were decreased in 15.34, 13.47, 9.58, 8.65cm/hr respectively. 3. As average porosity were decreased in 0.548, 0.506, 0.495, 0.468cm$^3$/cm$^3$ average capillary pressure head were increased in 6.1, 6.7, 6.9, 7.4cm respectively. 4. It was found that temporal variation of porosity, average hydraulic conductivity on a tilled soil might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity. 5. The results of this study may be helpful to predict infiltration into a tilled soil more accurately by considering Temporal variation of physical properties of soil.

  • PDF

Effects of Compost and Gypsum on Soil Water Movement and Retention of a Reclaimed Tidal Land

  • Lee, Jeong-Eun;Yun, Seok-In
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.340-344
    • /
    • 2014
  • Compost and gypsum can be used to ameliorate soil physicochemical properties in reclaimed tidal lands as an organic and inorganic amendment, respectively. To evaluate effects of compost and gypsum on soil water movement and retention as a soil physical property, we measured the soil's saturated hydraulic conductivity and field capacity after treating the soil collected in a reclaimed tidal land with compost and gypsum. Saturated hydraulic conductivity of soil increased when compost was applied at the conventional application rate of $30Mg\;ha^{-1}$. However, the further application of compost insignificantly (P > 0.05) increased saturated hydraulic conductivity. On the other hand, additional gypsum application significantly increased soil saturated hydraulic conductivity while it decreased soil field capacity, implying the possible effect of gypsum on flocculating soil colloidal particles. The results in this study suggested that compost and gypsum can be used to improve hydrological properties of reclaimed tidal lands through increasing soil water retention and movement, respectively.

골프장에 사용되는 4가지 토양개량제들의 혼합비율에 따른 토양이화학성의 변화 (Change of Soil Physicochemical Properties by Mixed Ratio of 4 Types of Soil Amendments Used in Golf Course)

  • 김영선;함선규;임혜정
    • 아시안잔디학회지
    • /
    • 제24권2호
    • /
    • pp.205-210
    • /
    • 2010
  • 본 연구는 코스조성에 주로 사용되는 4종의 토양개량제의 혼합비율에 따른 모래상토의 물리화학적 특성변화를 조사한 결과이다. 토양개량제의 혼합비율에 따라 상토의 물리화학성을 조사한 결과 peat, humate, peatmoss 및 zeolite는 pH와 CEC에서 고도의 상관성(P<0.01)을 나타내어 토양개량제의 특성에 따라 상토의 토양화학성에 영향을 주었다. 상토의 토양물리성 결과를 통해 USGA 기준으로 평가할 때, 최적의 혼합비율은 토양개량제 peat, humate 및 peatmoss는 각각 5%, 3%, 7%이고, zeolite에서는 적합한 비율을 찾을 수 없었다. 각 토양개량제들의 혼합에 따른 토양물리성 변화에서 가장 중요한 요인은 비모세관공극으로 총공극과 수리전도도의 변화에 영향을 미쳤다. 토양개량제의 혼합비율에 따른 토양개선효과를 비교할 때, peat와 peatmoss는 토양 모세관공극 및 수리전도도에서, humate는 수리전도도에서, zeolite는 비모세관공극과 총공극에서 고도의 상관성을 나타내었다(P<0.05). 이들 결과를 통해 골프코스의 상토조성에 사용되는 토양개량제의 종류와 특성 및 혼합비율이 USGA 상토의 근권층 개량과 토양 이 화학성에 영향을 미치고 있음을 알 수 있었다.

Use of the Quantitatively Transformed Field Soil Structure Description of the US National Pedon Characterization Database to Improve Soil Pedotransfer Function

  • Yoon, Sung-Won;Gimenez, Daniel;Nemes, Attila;Chun, Hyen-Chung;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Kang, Seong-Soo;Kim, Myung-Sook;Kim, Yoo-Hak;Ha, Sang-Keun
    • 한국토양비료학회지
    • /
    • 제44권5호
    • /
    • pp.944-958
    • /
    • 2011
  • Soil hydraulic properties such as hydraulic conductivity or water retention which are costly to measure can be indirectly generated by soil pedotransfer function (PTF) using easily obtainable soil data. The field soil structure description which is routinely recorded could also be used in PTF as an input to reduce the uncertainty. The purposes of this study were to use qualitative morphological soil structure descriptions and soil structural index into PTF and to evaluate their contribution in the prediction of soil hydraulic properties. We transformed categorical morphological descriptions of soil structure into quantitative values using categorical principal component analysis (CATPCA). This approach was tested with a large data set from the US National Pedon Characterization database with the aid of a categorical regression tree analysis. Six different PTFs were used to predict the saturated hydraulic conductivity and those results were averaged to quantify the uncertainty. Quantified morphological description was successively used in multiple linear regression approach to predict the averaged ensemble saturated conductivity. The selected stepwise regression model with only the transformed morphological variables and structural index as predictors predicted the $K_{sat}$ with $r^2$ = 0.48 (p = 0.018), indicating the feasibility of CATPCA approach. In a regression tree analysis, soil structure index and soil texture turned out to be important factors in the prediction of the hydraulic properties. Among structural descriptions size class turned out to be an important grouping parameter in the regression tree. Bulk density, clay content, W33 and structural index explained clusters selected by a two step clustering technique, implying the morphologically described soil structural features are closely related to soil physical as well as hydraulic properties. Although this study provided relatively new method which related soil structure description to soil structure index, the same approach should be tested using a datasets containing the actual measurement of hydraulic properties. More insight on the predictive power of soil structure index to estimate hydraulic properties would be achieved by considering measured the saturated hydraulic conductivity and the soil water retention.

코코넛 코이어와 피트모스 혼합 모래 토양의 물리·화학적 특성 (Physicochemical Properties of Root Zone Soil Based on Sand Blending with Coconut Coir and Peat Moss)

  • 김영선;배은지;최문진;김태웅;이긍주
    • 한국환경농학회지
    • /
    • 제41권2호
    • /
    • pp.101-107
    • /
    • 2022
  • BACKGROUND: Soil amendment was necessary applied for the sand that had been used to root zone of green ground in golf course because of its low water retention power and cation exchangeable capacity. This study was conducted to evaluate the effect of the mixed ratio of peat moss and coconut coir as soil amendment materials on the soil physicochemical properties applied to rootzone based on sand. METHODS AND RESULTS: The soil amendments were blended at 0, 3, 5, 7 and 10% by soil volume. The pH in the peat moss treatment was lower than that of control (0% soil amendment), and pH and electrical conductivity (EC) in the coconut coir were higher. The blending ratio of peat moss was negatively correlated with pH of rootzone soil (p<0.01), and that of coconut coir positively with EC (p<0.01). As compared with control, capillary porosity, the physical factors such as air-filled porosity, total porosity, and hydraulic conductivity of rootzone soil were increased by applying peat moss and coconut coir. For correlation coefficients between percentage of soil amendments and soil physical factors, peat moss and coconut coir were positively correlated with porosity and hydraulic conductivity (p<0.01). CONCLUSION(S): These results indicated that the application of peat moss and coconut coir affected on the change of physicochemical properties of rootzone soil, and improved soil porosity and hydraulic conductivity.

흙-벤토나이트 혼합 차수재의 품질관리 사례연구 (A Case Study on the Quality Control of Soil-Bentonite Admixed Liner)

  • 정하익;이용수;홍승서;정길수;이회준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.497-504
    • /
    • 1999
  • This study presents the physical and engineering characteristics of soil-bentonite admixed liner in I landfill. Main focus was the hydraulic conductivity of compacted soil-bentonite admixed and mechanisms governing low permeable properties of the admixed liner. Laboratory and field tests such as compaction, hydraulic conductivity, density, water content for the soil-bentonite admixed liner were carried out. Quality control criteria for the best construction of the soil-bentonite admixed liner was suggested through laboratory and field test results.

  • PDF

토양 특성을 이용한 토양유기탄소저장량 산정 모형 개발 (Development of Soil Organic Carbon Storage Estimation Model Using Soil Characteristics)

  • 이태화;김상우;신용철;정영훈;임경재;양재의;장원석
    • 한국농공학회논문집
    • /
    • 제61권6호
    • /
    • pp.1-8
    • /
    • 2019
  • Carbon dioxide is one of the major driving forces causing climate changes, and many countries have been trying to reduce carbon dioxide emissions from various sources. Soil stores more carbon dioxide(two to three times) amounts than atmosphere indicating that soil organic carbon emission management are a pivotal issue. In this study, we developed a Soil Organic Carbon(SOC) storage estimation model to predict SOC storage amounts in soils. Also, SOC storage values were assessed based on the carbon emission price provided from Republic Of Korea(ROK). Here, the SOC model calculated the soil hydraulic properties based on the soil physical and chemical information. Base on the calculated the soil hydraulic properties and the soil physical chemical information, SOC storage amounts were estimated. In validation, the estimated SOC storage amounts were 486,696 tons($3.526kg/m^2$) in Jindo-gun and shown similarly compared to the previous literature review. These results supported the robustness of our SOC model in estimating SOC storage amounts. The total SOC storage amount in ROK was 305 Mt, and the SOC amount at Gyeongsangbuk-do were relatively higher than other regions. But the SOC storage amount(per unit) was highest in Jeju island indicating that volcanic ashes might influence on the relatively higher SOC amount. Based on these results, the SOC storage value was shown as 8.4 trillion won in ROK. Even though our SOC model was not fully validated due to lacks of measured SOC data, our approach can be useful for policy-makers in reducing soil organic carbon emission from soils against climate changes.

동애등애 분변토의 혼합비율에 따른 토양이화학적 특성 (Soil Physicochemical Properties by applied with Mixed Ratio Soldier Fly (Hermetia illucens) Casts)

  • 김영선;이상범;함선규;임혜정;최영철
    • 아시안잔디학회지
    • /
    • 제25권1호
    • /
    • pp.106-111
    • /
    • 2011
  • 본 연구는 아메리카동애등애 사육과정에서 발생한 분변토(SFC)가 골프장의 토양개량제로서 사용가능성을 평가하기 위해 모래와 혼합비율별 물리화학성을 조사하고자 한다. 토양개량제의 혼합비율에 따라 상토의 물리화학성을 조사한 결과는 다음과 같다. SFC, compost 및 cocopeat는 pH와 EC에서 고도의 정의 상관성 (P<0.01)을 나타내어 토양개량제의 특성에 따라 상토의 토양화학성에 영향을 주었다. SFC와 compost의 혼합에 따른 토양물리성 변화에서 가장 중요한 요인은 모세관공극으로 총공극이나 수리전도도의 변화에 영향을 미쳤다. 토양개량제의 혼합비율에 따른 토양개선효과를 비교할 때, SFC는 모세관공극, 총공극 및 수리전도도에서, compost는 모세관공극, 비모세관공극, 총공극 및 수리전도도에서, cocopeat는 모세관공극과 비모세관공극에서 고도의 상판성을 나타내었다(P<0.05). 이들 결과를 통해 토양개량제의 종류와 특성 및 혼합비율이 USGA 상토의 근권층 개량과 토양 이화학성에 영향을 미치고 있음을 알 수 있으며, 본 실험조건에서는 SFC는 상토의 공극과 수리전도도의 개선효과를 보였다.