• Title/Summary/Keyword: Soil Monitoring

Search Result 1,223, Processing Time 0.029 seconds

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES (BTCs) IN STRUCTURED SOIL COLUMNS

  • Kim, Dong-Ju
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.25-29
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It would be questionable, however. to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the Horizontally-positioned TDR probes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. This was mainly due to the bypassing of solute through soil macropores.

  • PDF

A Study on Effective Management Scheme for Soil and Groundwater Contaminated by Radioactive Materials Due to Nuclear Accidents (원전사고에 따른 토양.지하수 방사성오염의 효과적인 관리 연구)

  • Kim, Hee-Joo;Hyun, Yun-Jung;Kim, Young-Ju;Hwang, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.113-121
    • /
    • 2011
  • In this study, we suggested the management scheme of analyzing the national and oversea related policy against soil and groundwater contamination by radioactive materials due to nuclear accidents. In Korea, we need to remedy swiftly the contaminated land due to intensive land development demand. So, we need to develop more effective management scheme to recover actively the land contaminated by radioactive materials. We require to improve monitoring network, to expand media-specific monitoring system, to prepare management system for remediation of contaminated land, and to develop flow work for soil and groundwater remediation.

Monitoring of bridge overlay using shrinkage-modified high performance concrete based on strain and moisture evolution

  • Yifeng Ling;Gilson Lomboy;Zhi Ge;Kejin Wang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.155-174
    • /
    • 2023
  • High performance concrete (HPC) has been extensively used in thin overlay for repair purpose due to its excellent strength and durability. This paper presents an experiment, where the sensor-instrumented HPC overlays have been followed by dynamic strain and moisture content monitoring for 1 year, under normal traffic. The vibrating wire and soil moisture sensors were embedded in overlay before construction. Four given HPC mixes (2 original mixes and their shrinkage-modified mixes) were used for overlays to contrast the strain and moisture results. A calibration method to accurately measure the moisture content for a given concrete mixture using soil moisture sensor was established. The monitoring results indicated that the modified mixes performed much better than the original mixes in shrinkage cracking control. Weather condition and concrete maturity at early age greatly affected the strain in concrete. The strain in HPC overlay was primarily in longitudinal direction, leading to transverse cracks. Additionally, the most moisture loss in concrete occurred at early age. Its rate was very dependent on weather. After one year, cracking survey was carried out by vision to verify the strain direction and no cracks observed in shrinkage modified mixes.

OBSERVATION OF SPECTRAL CHARACTERISTICS FOR SOIL CONTAMINANTS

  • Choe Eun-Young;Kim Kyoung-Woong;Lee Sung-Soon;Chi Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.422-425
    • /
    • 2005
  • Spectral characteristics depending on soil constituents and their proportion in a soil were firstly studied for monitoring of soil contamination using hyperspectral remote sensing. The reflectance spectra of heavy metals in soils were investigated in the VIS-NIR-SWIR regions (400-2500 nm) to observe spectral variation as a function of constituents and concentrations. Commercial kaolinite soils mixed with lead, copper, arsenic, and cadmium were used as synthetic soil samples for spectral measurement. In case of copper, relatively spectrally active regions was observed with some band shift whereas other heavy metals had only simple spectral variations expected to be related to the sorption phase and the amount of metal onto kaolinite. The reflectance spectrum of each metal on kaolinite could be identified in VIS-NIR region.

  • PDF

Spatio-Temporal Variations of Paddy and Water Salinity of Gunnae Reclaimed Tidelands in Western Coastal Area of Korea (서해안 군내간척지 담수호 및 농경지 염류의 시공간적 분포 특성 분석)

  • Beom, Jina;Jeung, Minhyuk;Park, Hyun-Jin;Choi, Woo-Jung;Kim, YeongJoo;Yoon, Kwang Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • To understand salinity status of fresh water and paddy soils and the susceptibility of rice to salinity stress of Gunnae reclaimed tidelands, salinity monitoring was conducted in rainy and dry seasons. For fresh water, a high salinity was observed at the sampling location near the sluice gate and decreased with distance from the gate. This spatial pattern of fresh water salinity indicates the necessity of spatial distribution of salinity in the assessment of salinity status of fresh water. Interestingly, there was significant correlation between rainfall amount and salinity, implying that salinity of fresh water varies with rainfall and thus it may be possible to predict salinity of water using rainfall. Soil salinity also higher near the gate, reflecting the influence of high saline water. In addition, the groundwater salinity also high to threat rice growth. Though soil salinity status indicated low possibility of sodium injury, there was changes in soil salinity status during the course of rice growth, suggesting that more intensive monitoring of soil salinity may be necessary for soil salinity assessment. Our study suggests the necessity of intensive salinity monitoring to understand the spatio-temporal variations of salinity of water and soil of reclaimed tideland areas.

Earthquake Observation through Groundwater Monitoring: A case of M4.9 Odaesan Earthquake (지하수 모니터링을 통한 지진 감시 가능성: 중규모(M4.9) 오대산 지진의 관측)

  • Lee, Hyun-A;Kim, Min-Hyung;Hong, Tae-Kyung;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.38-47
    • /
    • 2011
  • Groundwater monitoring data from the National Groundwater Monitoring Stations, a total of 320 stations, were analyzed to identify the response of water level and quality to the Odaesan earthquake (M4.9) occurred in January 2007. Among the total of eight stations responded to the earthquake, five wells showed water-level decline, and in three wells, water level rose. In terms of recovery, water levels in four stations had recovered to the original level in five days, but not in the rest four wells. The magnitude of water-level change shows weak relations to the distance between the earthquake epicenter and the groundwater monitoring station. However, the relations to the transmissivities of monitored aquifer in the station with the groundwater change were not significant. To implement the earthquake monitoring system through the groundwater monitoring network, we still need to accumulate the long-term monitoring data and geostatistically analyze those with hydrogeological and tectonic factors.

A study on the Measurement of Soil Water Concentration by Time Domain Reflectometry (TDR(Time Domain Reflectometry)을 이용한 토양수농도 측정에 관한 연구)

  • Park, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.123-132
    • /
    • 1998
  • Monitoring solute transport has been known to be difficult especially for the unsaturated soil. The object of this study is to investigate the TDR application to monitoring solute concentration in the vadose zone. The TDR calibration test was conducted for soil samples with various water contents and concentrations. The voltage attenuation of electromagnetic wave of TDR was used to estimate the bulk electrical conductivity of a soil. The relationship between the bulk soil electrical conductivity and the solute concentration was assumed to be linear at a constant volumetric soil water content. In this study four proposed relationships were compared using data obtained from KCI solution at three different concentrations. Relationships given by Topp, Daltaon, Yanuka showed the linearity between the bulk soil electrical conductivity and the solute concentration, which were more pronounced than Zegelin's. The three relationships were found to be useful to measure the solute concentration in the vadose zone. In addition, TDR method was proven to be a viable technique in monitoring solute transport through unsaturated soils in transient flow condition.

  • PDF

Gyeongju Earthquakes Recorded in Daily Groundwater Data at National Groundwater Monitoring Stations in Gyeongju (경주 국가지하수관측소 일자료로 본 경주지진 영향)

  • Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.80-86
    • /
    • 2016
  • Earthquakes of M5.1, M5.8 and M4.5 occurred in September 12 and 19 respectively in Gyeongju, Gyeongbuk Province. Theses earthquakes inflated fears of people and highlighted necessity of detailed countermeasures because we have considered our country is safe to earthquakes. In the meanwhile, earthquake also impacts groundwater and thus it was recently reported that the Gyeongju Earthquakes affected groundwater there. This study evaluates daily groundwater data collected from five national groundwater monitoring stations (Geoncheon, Sannae, Oedong, Yangbuksin, Cheonbuk) in Gyeongju. The analysis revealed that only groundwater level of bedrock monitoring well hosted in andesite exhibited earthquake impact while no wells in the other four stations hosted in sedimentary rocks showed substantial responses to the earthquakes. This may be derived from the difference of seismic velocity of hosting rocks as well as epicenter distance. Special interest on groundwater monitoring is required to predict earthquakes as precursory phenomena.

A Study on the Potential Contribution of Soil Seed Bank to the Revegetation (토양시드뱅크에 의한 식생복원 가능성에 관한 연구)

  • Koh, Jeung-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.6
    • /
    • pp.99-109
    • /
    • 2007
  • The main objectives of this comparative study were 1) to compare the floristic similarity of species composition between the extant vegetation and seedlings from soil seed bank and 2) to quantify the potential contribution of soil seed bank to revegetation of forest in a constructed area, which is called "ecological impact mitigation" in conjunction with the power plant extension. Forest topsoil of seven plots was collected from the surface soil after measurements were taken on the ground vegetation in each plot. A greenhouse experiment was conducted and monitored to analyze the germination potential of soil seed bank. The forest topsoil was spread on plastic trays ($0.7m^2{\times}7$) filled with a 5cm layer of sterilized potting mix. The results of monitoring for 2 years in a greenhouse were as follows : 1) seedlings of soil seed bank per 4.9$m^2$ were 1,269 with 36 species (1st year) and 2,615 with 25 species (2nd year). 2) 38${\pm}$8% of the flora species were germinated from soil seed bank. It can be concluded that the use of soil seed bank would be effective to promote establishment of diverse species and vegetation. However, it behooves to continue monitoring on succession of vegetation and pursue revegetation with other methods for ecological restoration. Finally, adequate topsoil deposit and gathering methods should be studied properly.

짝비교 기법을 활용한 보조지하수관측망 위치선정 기준 수립에 관한 연구

  • 김정우;김규법;원종호;이진용;이명재;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.259-262
    • /
    • 2003
  • In the Republic of Korea, Ministry of Construction & Transportation and Korea Water Resources Corporation manage the national groundwater monitoring network at the 169 stations and will organize the supplementary groundwater monitoring network at the 10,000 stations by 2011 year. The method that organizes the monitoring network was developed using the Analytic Hierarchy Process with pairwise comparison. Several estimation factors for the estimating every district were selected to reflect each district conditions. Their weighting value was decided by pairwise comparison and questions to the experts about groundwater The optimal number of groundwater monitoring well was calculated through the developed method. To verify this method, groundwater was monitored in Jeonju city by way showing the example. The study area In Jeonju city needs 7 stations for the supplementary groundwater monitoring network. The results monitored in 7 stations inferred the groundwater level around the study area by Kriging. The mean of residual between inferred groundwater level value from Kriging and actual groundwater level is rather low. Furthermore, the mean and standard deviation of residual between inferred groundwater level change and actual groundwater change is much lower. The Fact that 7 monitoring stations are sufficient for observing the groundwater condition in the study area makes it possible for suggested monitoring number to be proper.

  • PDF