• 제목/요약/키워드: Soil Monitoring

검색결과 1,223건 처리시간 0.033초

산지에서의 환경보전형 농업을 위한 토양의 질 평가 -모니터링 시스템의 구축과 기초자료의 수집- (Soil quality Assessment for Environmentally Sound Agriculture in the Mountainous Soils - Installation of Monitoring System and Background Data Collection -)

  • 최중대;김정제;정진철
    • 한국농공학회지
    • /
    • 제39권2호
    • /
    • pp.113-123
    • /
    • 1997
  • This study was initiated to build runoff plots, install soil and water quality monitoring systems and collect background data from the plots and neighboring soils as the 1st year study of a 5 year project to assess soil quality and develop the management practices for environmentally sound agriculture in mountainous soils. Eleven $3{\times}15m$ runoff plots and monitoring systems were installed at a field of National Alpine Agricultural Experiment Station to monitor soil quality and discharge of nonpoint source pollutants. Corn and potato were cultivated under different fertilizer, tillage and residue cover treatments. The soil has a single-layered cluster structure that has a relatively good hydrologic properties and can adsorb a large amount of nutrient. Concentrations of T-N, $NH_4$-N, and $NO_3$-N of surface soil sampled in the winter were relatively high. Runoff quality in the winter and thawing season in the spring was largely dependent on surface freezing, snow accumulation, temperature, surface thawing depth and so on. Runoff during the thawing season caused serious soil erosion but runoff quality during the winter was relatively good. Serious wind erosion from unprotected fields after the fall harvest were obserbed and best management practices to reduce the erosion need to be developed.

  • PDF

토양오염도 현황 통계의 품질 진단과 개선 방안 (Statistics Quality Assessment and Improvement of Monitoring on Soil Quality)

  • 김기대
    • 한국환경과학회지
    • /
    • 제18권10호
    • /
    • pp.1079-1088
    • /
    • 2009
  • The statistics of monitoring on soil quality is a report statistics which is made on the basis of Article 15, Environment Strategy Basic Law and Article 5, Soil Environment Conservation Law. This study was conducted according to quality assessment of Korea National Statistical Office. The assessment of quality infrastructure advised that the authority bring up and increase completely responsible officer and secure the budget. The assessment of user satisfaction and reflection of request propose that the statistics is focused on soil background concentration, decrease soil sampling points and extend survey period. The assessment of error management system per processes of detailed preparation suggest change of the statistics objective, a reduction of sampling points and improvement of survey period and soil measurement properties. Accuracy assessment of data proposed cuts of sampling points, accessibility increment and build up of management system linking subordinates and Ministry of Environment. The substantiality assessment of data service demonstrated information environment improvement for users including reference expression and records of statistics table and figure contents.

Characterizing the strain transfer on the sensing cable-soil interface based on triaxial testing

  • Wu, Guan-Zhong;Zhang, Dan;Shan, Tai-Song;Shi, Bin;Fang, Yuan-Jiang;Ren, Kang
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.63-74
    • /
    • 2022
  • The deformation coordination between a rock/soil mass and an optical sensing cable is an important issue for accurate deformation monitoring. A stress-controlled triaxial apparatus was retrofitted by introducing an optical fiber into the soil specimen. High spatial resolution optical frequency domain reflectometry (OFDR) was used for monitoring the strain distribution along the axial direction of the specimen. The results were compared with those measured by a displacement meter. The strain measured by the optical sensing cable has a good linear relationship with the strain calculated by the displacement meter for different confining pressures, which indicates that distributed optical fiber sensing technology is feasible for soil deformation monitoring. The performance of deformation coordination between the sensing cable and the soil during unloading is higher than that during loading based on the strain transfer coefficients. Three hypothetical strain distributions of the triaxial specimen are proposed, based on which theoretical models of the strain transfer coefficients are established. It appears that the parabolic distribution of specimen strain should be more reasonable by comparison. Nevertheless, the strain transfer coefficients obtained by the theoretical models are higher than the measured coefficients. On this basis, a strain transfer model considering slippage at the interface of the sensing cable and the soil is discussed.

기체크로마토그래피/질량분석기에 의한 저질 및 토양시료 중 벤조페논의 분석법 연구 (Analysis of Benzophenone in Sediment and Soil by Gas Chromatography/Mass Spectrometry)

  • 권오승;김은영;류재천
    • Environmental Analysis Health and Toxicology
    • /
    • 제16권3호
    • /
    • pp.121-126
    • /
    • 2001
  • Analytical method of benzophenone (BP) in sediment and soil was developed by gas chromatography/mass selective detector/selected ion monitoring (GC/MSD/SIM). The ultrasonic extraction of US EPA (method 3550B) method and liquid-liquid extraction for sediment and soil samples were used for the analysis of BP from sediment and soil. BP was extracted with n-hexane. Organic layer was washed with 5% sodium chloride solution. 1∼2 l of the concentrated solution of organic layer was applied to GC/MSD. The retention time of BP peak was 11.10 min. Recovery (%) of BP by ultrasonication from sediment and soil samples was 96.0∼100.6% and 40.0∼83.0%, respectively. Recovery of BP by liquid-liquid extraction was 51∼59% in soil samples. The detection limit of BP in sediment and soil samples were determined to 0.1 ng/g.

  • PDF

서울시 한강변 고덕 수변 생태복원지의 식물생태특성을 고려한 생태적 관리방안 (The Ecological Management on Consideration of Vegetation Structure at Goduck Riverside Restoration Area in Hangang, Seoul)

  • 이경재;한봉호;김정호;배정희
    • 한국조경학회지
    • /
    • 제32권2호
    • /
    • pp.86-101
    • /
    • 2004
  • This study was conducted to present the ecological management of Goduk Riverside Restoration Area in Hangang, Seoul by analyzing the change of the vegetation structure. The survey site was classified into three groups. These were the vegetation restoration area, the dry plant area, and the swampy plant area. There were 141 taxa including naturalized plants and 13 species recorded in 2001 and 258 taxa including naturalized plants and 42 species were recorded in 2003 by monitoring. Monitoring results showed that the alien plants such as Humulus japonicus expanded continuously except in the vegetation restoration area. It was found that the growing status of planted shrub plants were poor, and the naturalized plants status was thriving, and the soil environment was bad in the vegetation restoration area. The alien plants such as Humulus japonicus and Aster pilosus dominated continuously in the dry plant area. The swampy native herb plants number was decreased, but the Humulus japonicus community was expanded caused by the soil drying in the swampy plant area. Soil analysis showed that the soil acidity, the available phosphates and the concentration of calcium were highly effected by cultivation. We propose ecological management as follows based on the results of the change of vegetation and soil characteristics. The vegetation restoration area should be managed by visitor's characteristics. Replanting vegetations should be based on soil characteristics. The removal of naturalized plants and established monitoring with plots is also needed. In the dry plant area and the swampy plant area, naturalized plants need to be removed in order to facilitate bio-diversity and monitoring.

설마천 유역 범륜사사면의 토양수분 시공간 집중변화양상의 측정 (Spatial-temporal Distribution of Soil Moisture at Bumreunsa Hillslope of Sulmachun Watershed Through an Intensive Monitoring)

  • 이가영;김기훈;오경준;김상현
    • 한국수자원학회논문집
    • /
    • 제38권5호
    • /
    • pp.345-354
    • /
    • 2005
  • 국내 산지사면에서의 토양수분의 시공간적 분포를 파악하기 위한 동축 다중체계의 TDR (Time Domain Reflectometry)을 설마천 유역의 범륜사 사면에 구축하고 토양수분 집중 모니터링을 실시하였다. 대상사면을 정밀 측량하여 정밀 수치지형모형(Digital Elevation Model)을 구축하고 흐름분배알고리즘에 적용하여 측정지점을 선정하였고 역 측량을 통한 효율적인 측정 체계를 구축하였다. 2003년 11월중의 380시간 동안의 집중 모니터링을 통한 토양수분 자료를 확보하였다. 확보된 토양수분자료는 대상사면의 지형분석을 통해 구분된 상부, 중부, 하부사면의 변화특성을 보여주고 있다. 물리적 수문 모형의 구성과정에서 중요한 의미를 부여하는 토양수분 실측치와의 유의성을 논의하였다.

IoT를 사용한 센서 네트워크 기반의 실시간 토양 습도 모니터링 (Real-Time Soil Humidity Monitoring Based on Sensor Network Using IoT)

  • 김경헌;김희동
    • 한국전기전자재료학회논문지
    • /
    • 제35권5호
    • /
    • pp.459-465
    • /
    • 2022
  • This paper reports a method to use a wireless sensor network deployed in the field to real-time monitor soil moisture, warning when the moisture level reaches a specific value, and wirelessly controlling an additional device (LED or water supply system, etc.). In addition, we report all processes related to wireless irrigation system, including field deployment of sensors, real-time monitoring using a smartphone, data calibration, and control of additional devices deployed in the field by smartphone. A commercially available open-source Internet of Things (IoT) platform, NodeMCU, was used, which was combined with a 9V battery, LED and soil humidity sensor to be integrated into a portable prototype. The IoT-based soil humidity sensor prototype deployed in the field was installed next to a tree for on-site demonstration for the measurement of soil humidity in real-time for about 30 hours, and the measured data was successfully transmitted to a smartphone via Wifi. The measurement data were automatically transmitted via e-mail in the form of a text file, stored on the web, followed by analyses and calibrations. The user can check the humidity of the soil real-time through a personal smartphone. When the humidity of a soil reached a specific value, an additional device, an LED device, placed in the field was successfully controlled through the smartphone. This LED can be easily replaced by other electronic devices such as water supplies, which can also be controlled by smartphones. These results show that farmers can not only monitor the condition of the field real-time through a sensor monitoring system manufactured simply at a low cost but also control additional devices such as irrigation facilities from a distance, thereby reducing unnecessary energy consumption and helping improve agricultural productivity.

원위치 지반오염정화사업에서의 실시간 모니터링 시스템의 적용 사례 (Application of Real-Time Monitoring System to In-Situ Soil Remediation Project)

  • 정승용;김병일;한상재;김수삼;홍상기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1384-1389
    • /
    • 2005
  • A real-time monitoring system for in-situ soil remediation technologies is developed and then applied to electrokinetic remediation technique in the field trial tests during 150days. The developed system is consisted the controlled program based on internet web page, data logger, measurement instruments and so on. In the measured items there are pH, temperature, electrical current and potential, vacuum pressure. The results indicated that the system is successively applied to electrokinetic remediation technique, and further research considering economic view and multi purpose system for in-situ soil remediation technologies is needed.

  • PDF

토양 온도, 수분, EC 모니터링을 위한 다양한 EC 센서 비교 및 농경지 토양에서 이온 함량과 EC의 상관관계 평가 (Comparison of Various EC Sensors for Monitoring Soil Temperature, Water Content, and EC, and Its Relation to Ion Contents in Agricultural Soils)

  • 박진희;성좌경
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.157-164
    • /
    • 2021
  • Smart agriculture requires sensing systems which are fundamental for precision agriculture. Adequate and appropriate water and nutrient supply not only improves crop productivity but also benefit to environment. However, there is no available soil sensor to continuously monitor nutrient status in soil. Electrical conductivity (EC) of soil is affected by ion contents in soil and can be used to evaluate nutrient contents in soil. Comparison of various commercial EC sensors showed similar water content and EC values at water content less than 20%. Soil EC values measured by sensors decreased with decreasing soil water content and linearly correlated with soil water content. EC values measured by soil sensor were highly correlated with water soluble nutrient contents such as Ca, K, Mg and N in soil indicating that the soil EC sensor can be used for monitoring changes in plant available nutrients in soil.