• Title/Summary/Keyword: Soil Fumigation

Search Result 37, Processing Time 0.022 seconds

Exploration of Preservatives that Inhibit Wood Feeding by Inhibiting Termite Intestinal Enzyme Activity (흰개미 장내 효소 활성 억제로 목재의 섭식을 저해하는 보존 처리제의 탐색)

  • LEE, Jeung-Min;KIM, Young Hee;HONG, Jin Young;LIM, BoA;PARK, Ji Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.376-392
    • /
    • 2020
  • In Korea, damages to wooden cultural properties by termites have been reported all over the country, including Ulleungdo Island and Jeju Island. In order to reduce the damage caused by termites, most cultural properties damaged by them are treated with fumigation or drug treatment on the soil to kill or repel them. The number of treatments is decreasing due to cost and safety problems, and new methods needed to cope with this situation. After extracting an enzyme by selecting only worker termites from the termites collected in Shinan, Jeonnam, as a result of measuring the enzyme activity using xylan of cellulose and hemicellulose that are the components of wood, the activity of termite intestinal enzymes in xylan was higher than that of cellulose having a high molecular weight. Therefore, in this study, as a result of exploring over 600 species of medicinal plant extracts that inhibit the activity of termite intestinal enzymes using xylan as a substrate, the inhibitory effect was significant in Borneolum Syntheticum, Ephedra sinica, and Menthol. Selected Borneolum Syntheticum, Ephedra sinica, and Menthol's extracts not only inhibited the activity of termite intestinal enzymes, but also confirmed that they have insecticidal activation and inhibitory effects on feeding in the result of the direct treatment.

Effectiveness of Three Commercial Wood Preservatives against Termite in Korea (주요 국내 사용 방부제 3종에 대한 흰개미 저항 효력)

  • Lee, Hansol;Hwang, Won-Joung;Lee, Hyun-Mi;Son, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.804-809
    • /
    • 2015
  • Since Korea is home to Reticulitermes speratus, a kind of subterranean termites that prefer dark and humid conditions, there have been increasing damages to wooden structures by termites. One noticeable attribute of Korean subterranean termites is that they prefer than Pinus densiflora, the major construction material for Korean traditional houses. And because wide varieties of termites are distributed all over the world, it is not so easy to choose appropriate control methods depending on specific areas. This necessitates careful applications of the following control methods depending on the kinds of termites: fumigation treatment, soil termiticide, preservatives and insect treatment, termite colony elimination system, chemical treatment, and other physical and biological treatment methods. The purpose of this study is to investigate the control effects of environmentally-friendly Alkaline copper quaternary (ACQ), Copper Azole (CuAZ) and Micronized copper quarter (MCQ) on the termites contributing to the damage of wooden structures. It was found in this study that wood with preservative treatment produced a significantly higher termicidal efficacy than untreated wood.

Growth Stimulation of Pines by Artificial Inoculation with Mycorrhizal Fungus, Pisolithus tinctorius (균근균(菌根菌)의 인공접종(人工接種)에 의(依)한 소나무류(類)의 생장촉진(生長促進))

  • Koo, Chang Duck;Lee, Kyung Joon;Yim, Kyong Bin
    • Journal of Korean Society of Forest Science
    • /
    • v.55 no.1
    • /
    • pp.22-29
    • /
    • 1982
  • Two ectomycorrhizal fungi, Pisolithus tinctorius and Thelephora terrestris, were introduced form U.S.A. and inoculated to five pine species in Korea to evaluate the reported growth stimulation of host plants after inoculation. These fungi were grown as mycelial inoculum in large quantity and ioculated to the fumigated nursery soil just before seed sowing. At the end of the first growing season. Pisolithus stimulated the height growth of Pinus densiflora. P. thunbergii. P. rigida, and P. rigida x teada by55, 36, 69, and 37%, respectively, compared with control seedlings with no fumigation and no inoculation. When the growth stimulation was expressed with dry weight, Pisolithus increased dry weight of P. densiflora and P. rigida x taeda by 143% and 128%, respectively, over control seedling. Thelephora failed to stimulate growth of inoculated plants. Pinus koraiensis did not respond to the inoculation during the first growing season. It is concluded that artificial inoculation of nursery pine trees with selected mycorrhizal fungi should be seriously considered to improve the quality of planting stocks and to stimulate early plant growth. The potential for use of Pisolithus in reforestation on adverse sited is also discussed.

  • PDF

Effect of Uniconazole and Silver Thiosulfate Treatment on Reduction of Ozone Injury in Snap Bean Plants (Uniconazole과 Silver Thiosulfate 처리(處理)가 강남콩의 오존피해(被害) 경감(輕減)에 미치는 효과(效果))

  • Ku, Ja Hyeong;Won, Dong Chan;Cho, Jeong Hee;Shin, Dae Shik
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.2
    • /
    • pp.161-169
    • /
    • 1992
  • Studies were conducted to examine the effects of single or combined treatment of uniconazole [(E)-1-(4-chlorophenyl)-4, 4-dimethyl 2(1, 2,-4-triazol-1-yl)-1-penten-3-ol)] and silver thiosulfate (STS) on reducing ozone injury to snap beans (Phaseolus vulgaris L. 'Strike'). Two weeks after seeding, plants were given a soil drench of uniconazole(XE-1019) solution at concentrations of 0.001, 0.005 and 0.025 mg/pot, and then two days prior to ozone fumigation, 0.3 and 0.6 mM STS containing 0.01% Tween-20 were also sprayed. Uniconazole was effective in providing protection against ozone injury through increase activities of free radical scavengers such as superoxide dismutase (SOD) and peroxidase (POD) as well as the increase of chlorophyll content and stomatal resistance resulted from plant growth retardation. The phytoprotective effects of STS seemed to be related to its properly of blocking the ethylene action and increasing activities of SOD and POD. Even at low concentrations, a combined treatment with uniconazole drench, STS spray significantly reduced ozone injury compared to single application.

  • PDF

History of Disease Control of Korean Ginseng over the Past 50 Years (과거 50년간 고려인삼 병 방제 변천사)

  • Dae-Hui Cho
    • Journal of Ginseng Culture
    • /
    • v.6
    • /
    • pp.51-79
    • /
    • 2024
  • In the 1970s and 1980s, during the nascent phase of ginseng disease research, efforts concentrated on isolating and identifying pathogens. Subsequently, their physiological ecology and pathogenesis characteristics were scrutinized. This led to the establishment of a comprehensive control approach for safeguarding major aerial part diseases like Alternaria blight, anthracnose, and Phytophthora blight, along with underground part diseases such as Rhizoctonia seedling damping-off, Pythium seedling damping-off, and Sclerotinia white rot. In the 1980s, the sunshade was changed from traditional rice straw to polyethylene (PE) net. From 1987 to 1989, focused research aimed at enhancing disease control methods. Notably, the introduction of a four-layer woven P.E. light-shading net minimized rainwater leakage, curbing Alternaria blight occurrence. Since 1990, identification of the bacterial soft stem rot pathogen facilitated the establishment of a flower stem removal method to mitigate outbreaks. Concurrently, efforts were directed towards identifying root rot pathogens causing continuous crop failure, employing soil fumigation and filling methods for sustainable crop land use. In 2000, adapting to rapid climate changes became imperative, prompting modifications and supplements to control methods. New approaches were devised, including a crop protection agent method for Alternaria stem blight triggered by excessive rainfall during sprouting and a control method for gray mold disease. A comprehensive plan to enhance control methods for Rhizoctonia seedling damping-off and Rhizoctonia damping-off was also devised. Over the past 50 years, the initial emphasis was on understanding the causes and control of ginseng diseases, followed by refining established control methods. Drawing on these findings, future ginseng cultivation and disease control methods should be innovatively developed to proactively address evolving factors such as climate fluctuations, diminishing cultivation areas, escalating labor costs, and heightened consumer safety awareness.

Ecological Characteristics and Changes of Quercus mongolica Community in Namsan (Mt.), Seoul (서울시 남산 신갈나무림 생태계 특성과 변화 연구)

  • Han, Bong-Ho;Park, Seok-Cheol;Kim, Jong-Yup;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.41-63
    • /
    • 2022
  • The purpose of this study is to secure objective and precise data through ecosystem monitoring, to reveal ecological characteristics through comparison and analysis with past survey data, and to accumulate basic data for diagnosing the current situation and predicting changes in the ecosystem. The target site is the 'Quercus mongolica forest on the Buksa-myeon of Namsan', which was designated as an Ecological Landscape Conservation Area (ELCA) of Seoul in July 2006. The research contents are analysis of soil environment change (1986~2016), change of actual vegetation (1978~2016), and change of plant community structure (1994~2016). A total of 8 fixed surveys (400~1,200m2) were established in 1994 and 2000. Analysis items are importance value, species and population, and Shannon's species diversity. The soil environment of Namsan is acidic (pH 4.40 in 2016), which is expected to have a negative impact on tree growth and vegetation structure due to its low capacity for exchangeable cations. Quercus mongolica forest in Namsan is mainly distributed on the northern slopes. The actual vegetation area changed from 49.4% in 1978 → 80.7% in 1986 → 82.4% in 2000 → 88.3% in 2005 → 88.3% in 2009 → 70.3% in 2016. In 2016, the forest decreased by 18% compared to 2009. While there was increased growth of Quercus mongolica in the tree layer from 2009 to 2016, the overall decline in vegetation area was due to logging and fumigation management following the spread of oak wilt in 2012. As for the changes in the plant community structure, Quercus mongolica of the tree layer was damaged by oak wilt, and the potential vegetation that can form the next generation was ambiguous. In the subtree layer, the force of urbanization tree species such as Styrax japonicus, Sorbus alnifolia, and Acer palmatum. was maintained or increased. In the shrub layer, the number of trees and species increased significantly due to the open tree crown, and accordingly, the species diversity of Shannon for woody plants also increased. In Quercus mongolica forest of Namsan, various ecological changes are occurring due to the effects of urban environments such as air pollution and acid rain, the limitation of Quercus mongolica pure forest due to oak wilt, and the introduction of exotic species, thus, it is necessary to establish a management plan through continuous monitoring.

Effect of Sulfur Dioxide on Crops - Physiology of Lesion, Yield Loss, and Preventive Measures (아황산(亞黃酸)가스에 의(依)한 농작물(農作物)의 피해생리(被害生理) 감수율(減收率) 및 피해경감(被害輕減)에 관(關)한 연구(硏究))

  • Han, Ki-Hak
    • Applied Biological Chemistry
    • /
    • v.16 no.3
    • /
    • pp.146-165
    • /
    • 1973
  • Crop damages caused by sulfur dioxide poisoning were studied with respect to physiology of lesion, yield loss and prevention measures. The results are summarized as follows; 1. On the physiology of injury: The sulfur dioxide gas did no: affect the pH and $E_h$ values of the tested leaf juice of plants. Peroxidase activity was inhibited just after sulfur dioxide treatment but gradually recovered to normal after 10 hours. Methanolic chlorophyll solution was instantaneously and irreversibly bleached by the addition of sulfur dioxide gas with no evidence of pheophytin formation. It seems that chlorophyll forms colourless addition product or is reduced to colourless form with either sulfur dioxide gas or sulfurous acid. Chlorophyll in the chloroplast was also bleached by the sulfur dioxide treatment, as in the case of methanolic solution of chlorophyll, except that the rate of bleaching was rather slow, requiring 1-2 hours. It appears that the most inflicting cause of sulfur dioxide gas to plants may be the destruction of chlorophyll by the poisoning gas. 2. On the effects to crop yield: The crop yield losses were proportional to the concentration of inflicting sulfur dioxide gas. The order of tolerence of the crops to the sulfur dioxide gas was as follows - chinese cabbage being the most susceptible; wheat, paddy rice, barley, soybean, welsh onion, radish and chinese cabbage. The crucifer crops were generally found more susceptible than other crops studied. With respect to the growing stages of crops exposed to sulfur dioxide gas, it was found that the flowering stage was the most susceptible fellowed by panicle forming, milky and tillering in the decreasing order of susceptibility. 3. On the preventive measures of yield losses: Soil applications of potassium, wollastonite, lime or spray of lime water were effective to prevent yield losses from sulfur dioxide fumigation of paddy rice, barley, and soybeans. The most responsive treatment was lime water spray for all crops tested. In case of sulfur dioxide fumigated paddy rice, the lime water spray also increased carbon assimilation.

  • PDF