• Title/Summary/Keyword: Soil EC

Search Result 845, Processing Time 0.03 seconds

Molecular biological analysis of Bt-transgenic (Bt-9) rice and its effect on Daphnia magna feeding

  • Oh, Sung-Dug;Yun, Doh-Won;Chang, Ancheol;Lee, Yu-jin;Lim, Myung-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.113-124
    • /
    • 2019
  • Insect-resistant transgenic (Bt-9) rice was generated by inserting mCry1Ac1, a modified gene from the soil bacterium Bacillus thuringiensis, into the genome of a conventional variety of rice (Ilmi). With regard to potential problems such as safety, an evaluation of non-target organisms is necessary as an essential element of an environmental risk assessment of genetically modified (GM) crops. We studied the effects of the Bt-9 rice on the survival of cantor Daphnia magna, a commonly used model organism in ecotoxicological studies. D. magna fed on the Bt-transgenic rice (Bt-9) and its near non-GM counterparts (Ilmi) grown in the same environment (a 100% ground rice suspension). The Bt-9 rice was confirmed to have the inserted T-DNA and protein expression evident by the PCR and ELISA analyses. The feeding study showed a similar cumulative immobility and abnormal response of the Daphnia magna between the Bt-9 rice and Ilmi. Additionally, the 48 h-EC50 values of the Bt-9 and Ilmi rice were 4,400 mg/L (95% confidence limits: 3861.01 - 5015.01 mg/L) and 5,564 mg/L (95% confidence limits: 4780.03 - 6476.93 mg/L), respectively. The rice NOEC (No observed effect concentration) value for D. magna was suggested to be 1,620 mg/L. We conclude that the tested Bt-9 and Ilmi have a similar cumulative immobility for D. magna, a widely used model organism, and the growth of Bt-9 did not affect non-target insects.

Adsorption Characteristics of NH4+ by Biochar Derived from Rice and Maize Residue (벼와 옥수수 부산물로 제조한 바이오차의 NH4+ 흡착 특성 평가)

  • Kang, Yun-Gu;Lee, Jae-Han;Chun, Jin-Hyuk;Oh, Taek-Keun
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.161-168
    • /
    • 2021
  • BACKGROUND: Biochar has ability to reduce N loss, increase crop yield, and sequestrate carbon in the soil However, there is still limited study concerning the interactive effects of various biochars on NH3 loss and plant growth. This study, therefore, was conducted to investigate the NH4+ adsorption characteristics of biochar derived from rice and maize residues. METHODS AND RESULTS: By-products were pyrolyzed under oxygen-limited conditions at 300-700℃ for 1 hour and used for experiment of NH4+ adsorption in aqueous solution. The adsorption characteristics of biochar were studied using Langmuir isotherm. Biochar yield and hydrogen content decreased with increasing pyrolysis temperatures, whereas pH, EC, and total carbon content increased. The biochar pyrolyzed at lower temperatures was more efficient at NH4+ adsorption than those produced at higher temperatures. In addition, the RL values, indicating equilibrium coefficient were between 0 and 1, confirming that the result was suitable for Langmuir isotherm. CONCLUSION: The maize stalk biochar pyrolyzed at 300℃ was the most efficient to adsorb NH4+ from the aqueous solution. Furthermore, the adsorption results of this experiment were lower than those of other prior studies, which were ascribed to different experimental conditions such as ingredients, and pyrolysis conditions.

Adsorption characteristics of NH4-N by biochar derived from pine needles

  • Kang, Yun-Gu;Lee, Jun-Young;Chun, Jin-Hyuk;Lee, Jae-Han;Yun, Yeo-Uk;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.589-596
    • /
    • 2021
  • Nitrogen applied to soil is highly prone to leaching and volatilization leading to gaseous emissions of nitrous oxide (N2O) and ammonia (NH3) which are of great environmental concern. Usage of biochar to reduce the discharge of nitrogen to the environment has attracted much interest in the recent past. Biochar is produced by pyrolyzing various biomasses under oxygen-limited conditions. Biochar is a carbonized material with high adsorptive powers for not only plant nutrients but also heavy metals. The objective of this study was to investigate the adsorption characteristics of NH4-N onto biochar made from pine needles. The biochar was produced at various pyrolysis temperatures including 300, 400 and 500℃ and holding times of 30 and 120 minutes. The Langmuir isotherm was used to evaluate the adsorption test results. The chemical properties of the biochar varied with the pyrolysis conditions. In particular, the pH, EC and total carbon content increased with the increasing pyrolysis conditions. The rate of adsorption of NH4-N by the biochar decreased with the increasing pyrolysis conditions. Of these conditions, biochar that was pyrolyzed at 300℃ for 30 minutes showed the highest adsorption rate of approximately 0.071 mg·g-1. Thus, the use of biochar pyrolyzed at low temperatures with a short holding time can most efficiently reduce ammonia emissions from agricultural land.

Path Analysis of Factors Limiting Crop Yield in Rice Paddy and Upland Corn Fields (벼와 옥수수 재배 포장에서 경로분석을 이용한 작물 수확량 제한요인 분석)

  • Chung S. O.;Sudduth K. A.;Chang Y. C.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.45-55
    • /
    • 2005
  • Knowledge of the relationship between crop yield and yield-limiting factors is essential for precision farming. However, developing this knowledge is not easy because these yield-limiting factors are interrelated and affect crop yield in different ways. In this study, data for grain yield and yield-limiting factors, including crop chlorophyll content, soil chemical properties, and topography were collected for a small (0.3 ha) rice paddy field in Korea and a large (36 ha) upland corn field in the USA, and relationships were investigated with path analysis. Using this approach, the effects of limiting factors on crop yield could be separated into direct effects and indirect effects acting through other factors. Path analysis provided more insight into these complex relationships than did simple correlation or multiple linear regression analysis. Results of correlation analysis for the rice paddy field showed that EC, Ca, and $SiO_2$ had significant (P<0.1) correlations with rice yield, while pH, Ca, Mg, Na, $SiO_2,\;and\;P_2O_5$ had significant correlations with the SPAD chlorophyll reading. Path analysis provided additional information about the importance and contribution paths of soil variables to rice yield and growth. Ca had the highest direct effect (0.52) and indirect effect via Mg (-0.37) on rice yield. The indirect effect of Mg through Ca (0.51) was higher than the direct effect (-0.38). Path analysis also enabled more appropriate selection of important factors limiting crop yield by considering cause-and-effect relationships among predictor and response variables. For example, although pH showed a positive correlation (r=0.35) with SPAD readings, the correlation was mainly due to the indirect positive effects acting through Mg and $SiO_2$, while pH not only showed negative direct effects, but also negatively impacted indirect effects of other variables on SPAD readings. For the large upland Missouri corn field, two topographic factors, elevation and slope, had significant (P<0.1) direct effects on yield and highly significant (P<0.01) correlations with other limiting factors. Based on the correlation analysis alone, P and K were determined to be nutrients that would increase corn yield for this field. With the help of path analysis, however, increases in Mg could also be expected to increase corn yield in this case. In general, path analysis results were consistent with published optimum ranges of nutrients for rice and com production. We conclude that path analysis can be a useful tool to investigate interrelationships between crop yield and yield limiting factors on a site-specific basis.

Chemical Characteristics and Pollution of Groundwater in the Ponchon Area, Kwangju (광주, 본촌지역의 지하수의 수화학적 특성과 오염)

  • 양해근;김인수;최희철;김정우
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.83-95
    • /
    • 2001
  • In this study, the contaminated status of groundwater under Ponchon Basin, Kwangju-city was analyzed by hydrogeological survey. Though the distribution of groundwater hydraulic head was similar with the ground elevation, the flow system of groundwater was changed due to overpumping in the industrial area. Paddy field and residential area which were located in the north part of the basin had relatively high concentrations of Cl, N $a^{+}$ and N $O_3$$^{[-10]}$ in the groundwater. Southern part of the basin which most industrial area occupied had relatively high concentrations of HC $O_3$, $Ca^{2+}$, $Mg^{2+}$ and Zn. Groundwater was contaminated by C $l^{[-10]}$ and N $O_3$$^{[-10]}$ due to the infiltration of domestic sewage and factory wastewater. In the Cl case, C $l^{[-10]}$ had a tendency of distribution over the water shed along with the contaminated source. The drawdown of groundwater due to overpumping caused more vertical movement of contaminant than lateral movement. If the overpumping continues in the industrial area, the groundwater flow system will be more affected and the groundwater will be lowered in the north part of basin. It is clear that contamination by C $l^{[-10]}$ and N $O_3$$^{[-10]}$ due to domestic sewage and factory wastewater will spread through the whole basin area.rea.

  • PDF

Effects of Nitrogen and Potassium Fertigation on Growth, Yield and Quality of Musk Melon (Cucumis melo. L) (시설멜론의 관비재배를 위한 질소와 칼륨의 관비수준 설정)

  • Rhee, Han-Cheol;Park, Jin-Meun;Seo, Tae-Cheol;Choi, Gyoeng-Lee;Roh, Mi-Young;Cho, Myeung-Whan
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.273-279
    • /
    • 2009
  • This study was conducted to identify optimal concentrations of N (nitrogen) and K (Potassium) fertilizers on growth, yield and quality of melon (Cucumis melo. L) when they were grown with a fertigation culture in a greenhouse. Three strength (S) levels of fertilizers, including 1 S, 1/2S, and 1/4S were supplied N and K nutrients as using a trickle irrigation system. When the strength level of fertilizers was increased from 1/4S to 1 S, the level of EC (electronic conductivity) in soil was increased. Soil-water tension was ranged between -15 and -20kPa until fruit setting stage, whereas it was ranged between -45 and -50kPa in the later growth stages. In results, N fertilizer had effects on fruit yield and quality. A higher fruit yield was observed when plants were supplied with 1 S and 1/2S level of N fertilizer. The highest yield of marketable fruit, about 5,086kg/10a, was also observed when plants were supplied with 1/2S N fertilizer. A higher net index and sugar content of fruit was observed in the treatments of 1/2S and 1/4S level of N fertilizer compared to 1 S level. In contrast, there was no statistic difference in the yield and quality with three levels of K fertilizer. Results indicate that the 1/2S level for N and 1/4S level for K fertilizer are effective and optimal for the melon plants grown under the fertigation culture in terms of increasing fruit yield and quality and reducing the cost of fertilizers.

Survey on the Farms in Main Producing Area of Job's Tears (율무 주산 지역 농가의 실태조사)

  • 강치훈;박기준;유창재;김두환
    • Korean Journal of Plant Resources
    • /
    • v.14 no.1
    • /
    • pp.77-83
    • /
    • 2001
  • This survey was carried out to collect the basic informations for the improvement of cultivation in job's tears (Coix lachryma-jobi L.) by investigating the general facts, farming practices, growth characteristics, grain yield, and chemical properties of soil in Yonchon-gun farms. The age of farmers were over 51 and the cultivated area was small. Most farmers were self-laboring and produced seeds on their land. Sowing method was usually drilling by hand, 64% of farms had the density of 2000-3500 plant per 10 a, amount of fertilizer application was diverse and the number of pest control was a few. The averages of plant height, number of main culm node, culm diameter, tiller number of plant, thousand grain weight, and grain yield were 184 cm, 10, 10 mm, 14, 108 g, and 341 kg/10a, respectively. The averages of pH, organic matter, $P_2O_5$, K, and EC of soil after harvest were 5.8, 1.1 g/kg, 385 mg/kg, 0.48 cmol+/kg, and 0.21 dS/m, respectively. Grain yield and hardness were negatively correlated -0.7442 at the level of P=0.01.

  • PDF

Ammonia Volatilization from Rice Paddy Soils Fertilized with 15N-Urea Under Elevated CO2 and Temperature

  • Lim, Sang-Sun;Kwak, Jin-Hyeob;Lee, Dong-Suk;Lee, Sun-Il;Park, Hyun-Jung;Kim, Han-Yong;Nam, Hong-Shik;Cho, Kyeong-Min;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.233-237
    • /
    • 2009
  • It has widely been observed that the effect of elevating atmospheric $CO_2$ concentrations on rice productivity depends largely on soil N availabilities. However, the responses of ammonia volatilization from flooded paddy soil that is an important pathway of N loss and thus affecting fertilizer N availability to concomitant increases in atmospheric $CO_2$ and temperature has rarely been studied. In this paper, we first report the interactive effect of elevated $CO_2$ and temperature on ammonia volatilization from rice paddy soils applied with urea. Urea labeled with $^{15}N$ was used to quantitatively estimate the contribution of applied urea-N to total ammonia volatilization. This study was conducted using Temperature Gradient Chambers (TGCs) with two $CO_2$ levels [ambient $CO_2$ (AC), 383 ppmv and elevated $CO_2$ (EC), 645 ppmv] as whole-plot treatment (main treatment) and two temperature levels [ambient temperature (AT), $25.7^{\circ}C$ and elevated temperature (ET), $27.8^{\circ}C$] as split-plot treatments (sub-treatment) with triplicates. Elevated temperature increased ammonia volatilization probably due to a shift of chemical equilibrium toward $NH_3$ production via enhanced hydrolysis of urea to $NH_3$ of which rate is dependent on temperature. Meanwhile, elevated $CO_2$ decreased ammonia volatilization and that could be attributed to increased rhizosphere biomass that assimilates $NH_4^+$ otherwise being lost via volatilization. Such opposite effects of elevated temperature and $CO_2$ resulted in the accumulated amount of ammonia volatilization in the order of ACET>ACAT>ECET>ECAT. The pattern of ammonia volatilization from applied urea-$^{15}N$ as affected by treatments was very similar to that of total ammonia volatilization. Our results suggest that elevated $CO_2$ has the potential to decrease ammonia volatilization from paddy soils applied with urea, but the effect could partially be offset when air temperature rises concomitantly.

Distribution Characteristics of Paddy Weeds in Northern Gyeonggi-do (경기북부 논 잡초 분포 특성)

  • Oh, Young-Ju;Hong, Sun-Hee;Lee, Wook-Jae;Kim, Chang-Seok;Lee, In-Yong
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.413-420
    • /
    • 2013
  • The climate change affects the growth and development of weeds as well as the outbreak of weeds. Especially, the occurrences of problematic paddy weeds due to climate change might cause the difficulties in weed control. This study therefore, investigated the current dominance and distribution of paddy weeds. As a result of the study on paddy weeds in northern Gyeonggi-do, there were total of 65 taxonomy groups including 23 family, 41 genus, 57 species, 7 subspecies and 1 variety. Among all the plants, 46 species were annual plants and 16 were perennial plants. Echinochloa crus-galli was the highest in importance analysis and the followings were in order of Ludwigia prostrate and Lemna paucicostata. The similarity of different paddy weeds in different regions observed through TWINSPAN analysis was distinguished by Fimbristylis miliacea, Rotala indica and Cyperus flaccidus. Regional differences shown in CCA analysis using weed species and soil environment revealed that Gimpo-si and Namyangju-si has difference soil and weeds, which are features that distinguished them from other regions. In northern Gyeonggi-do the result of paddy weed research showed the interregional difference not in dominant weeds but in distribution species.

Fate of Fenitrothion aerially applied to the Pine Forest (항공살포에 따른 Fenitrothion의 산림환경 중 행적)

  • Kim, Dae-Gyun;Kim, Chan-Sub;Lee, Byung-Moo;Choi, Ju-Hyeon;Park, Jae-Eup
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.322-327
    • /
    • 2012
  • Fate of fenitrothion aerially sprayed to control pine wood nematode (Bursaphelenchus xylophilus) was studied in a forest of Haman area. And the monitoring of fenitrothion was conducted in a stream flowed from forest area of Gijang sprayed fenitrothion. Fenitrothion 50% EC was diluted 100 times and applied two or three times using helicopter in Haman and Gijang, respectively. Average fenitrothion deposits on forest floor ranged from 6% of standard aerial application rate. Following to the second application, fenitrothion deposits in the pine needle ranged from 0.6 to 0.9 mg/kg and then rapidly decreased to 0.01 mg/kg after 109 days. Deposits on the plant washed off by rainfall and reached to soil surface was 1.3% of the application rate. All of fenitrothion on the ground resided in the forest floor covering the soil surface, where fenitrothion residues were decreased to a tenth at 109 days after the second application, but they were not detected in sol beneath it. And the only low level of fenitrothion residues, 0.0009 mg/L, was detected in runnel of the experimental forest just after aerial application. The concentration of fenitrothion in effluent from Gijang area was less than detection limit (0.0001 mg/L) during the entire period.