• Title/Summary/Keyword: Soil Component

Search Result 581, Processing Time 0.031 seconds

Changes in Chemical Components of Stagnant Water by Tillage Method and Amount of Nitrogen Application in Wet Seeded Rice after Barley Straw Mulching (논에 보리짚 시용시 경운방법 및 질소시비량에 따른 논물의 화학성분 변화)

  • Cheong, Jin-Il;Choi, Min-Gyu;Noh, Tae-Hwan;Lee, Jung-Ho;Kwon, Tae-Ohu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • The experiment was aimed to determine a change of chemical component in irrigatted water based on different tillage methods and nitrogen rates under mulching of barley straw in direct seeded rice. There was no difference in water pH of no-tillaged plot but high in tillaged plot until 10 days after treatment. The electric conductivity(EC) of the water was higher in no-tillaged plot than in tillaged plot. However, the dissolved oxygen content was vice versa. The content of NH$_4$-N was high in higher application rate of N fertilizer without the tillage. Mean while, NO$_3$-N content was highly affected by no-till aged plot particularly in between application time and fertilizer rate but not in tillaged plot. There was higher in P043- content with the no-tillaged plot compared to the tillaged plot. It was big difference with higher application rate of the fertilizer. Soil cations were high in much application of fertilizer without the tillage.

  • PDF

Grain Yield and Physiological Responses of Water Stress at Reproductive Stage in Barley (보리 생식생장기의 수분부족이 수량 및 몇 가지 생리적 반응에 미치는 영향)

  • Choi, Won-Yul;Kwon, Yong-Woong;Park, Jong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.3
    • /
    • pp.263-269
    • /
    • 1997
  • To cope with increasing importance of water stress in food crop production, some physiological characteristics, their cultivar-differences and grain yield of winter barley cultivars in response to water stress during reproductive stages were studied employing three covered-barley cultivars, Milyang 12, Durubori, and Olbori, one naked-barley cultivar, Baegdong, and one two-row malting-barley cultivar, Hyangmaeg. The barley grown in pot-soil was conditioned for 10 days under water stress, varying the time of water stress : 20 days before heading, 10 days before heading and the time of heading. The decrease in growth due to water stress varied greatly with the cultivars and time of water stress. The greatest injury occurred when water stress was imposed for 10 days from 10 days before heading : the culm length of water-stressed plants have shown reduced by 85∼98% of the non-stressed; the number of spikes per plant by 52∼83%; the number of grains per spike by 71∼86%; 1,000-grain weight by 80∼84%; yield per pot by 60∼94%. The number of spikes per plant as one of yield components was most sensitively affected. As a whole, the drought resistance of cultivars was high in the order of Olbori> Milyang 12 and Durubori> Hyangmaeg>Baegdong. On rewatering the plants after termination of the water stress treatment the recovery rate of free proline content and relative turgidity of flag leaf were higher in 3 covered-barley cultivars, and lower in cultivars Baegdong and Hyangmaeg.

  • PDF

Evaluation of Near Subsurface 2D Vs Distribution Map using SPT-Uphole Tomography Method (SPT-업홀 토모그래피 기법을 이용한 지반의 2차원 전단파 속도 분포의 도출)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.143-155
    • /
    • 2006
  • SPT-Uphole tomography method was introduced for the evaluation of near subsurface shear wave velocity (Vs) distribution map. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole tomography method was performed at the weathered soil site where several boring data with SPT-N values are available, and the feasibility of proposed method was verified in the field.

Identification of Active Agents for Reductive Dechlorination Reactions in Cement/Fe (II) Systems by Using Cement Components (시멘트 구성성분을 이용한 시멘트/Fe(II)의 TCE 환원성 탈염소화 반응의 유효반응 성분 규명)

  • Jeong, Yu-Yeon;Kim, Hong-Seok;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.92-100
    • /
    • 2008
  • Experimental studies were conducted to identify the active agents for reductive dechlorination of TCE in cement/Fe(II) systems focusing on cement components such as CaO, $Fe_2O_3$, and $Al_2O_3$. A hematite that was used to simulate an $Fe_2O_3$ component in cement was found to have degradation efficiencies (k = 0.641 $day^{-1}$) equivalent to that of cement/Fe(II) systems in the presence of CaO/Fe(II), only when it contained an aluminum impurity$(Al_2O_3)$. When the effect of $Al_2O_3$ content of hematite/CaO/$Al_2O_3$/Fe(II) system was tested, the mole ratio of $Al_2O_3$ to CaO affected the rate of TCE degradation with an optimum ratio around 1 : 10 that resulted in a rate constant of 0.895 $day^{-1}$. In the SEM images of hematite/CaO/$Al_2O_3$/Fe(II) systems, acicular crystals were also found that were also observed in cement/Fe(II) systems. Thus it was suspected that these crystals were reactive reductants and that they might be goethite or ettringite that are known to have acicular structures. An EDS element map analysis revealed that these crystals were not goethite crystals. A subsequent experiment that tested reactivities of compounds formed during the ettringite synthesis showed that ettringite and minerals associated with ettringite formation are not reactive reductants. These observations conclude that a mineral containing CaO and $Al_2O_3$ with a acicular structure could be a major reactive reductant of cement/Fe(II) systems.

Soil Contamination of Heavy Metals in National Industrial Complexes, Korea (국내 주요 국가산업단지에서 중금속에 의한 토양오염)

  • Jeong, Tae-Uk;Cho, Eun-Jeong;Jeong, Jae-Eun;Ji, Hwa-Seong;Lee, Kyeong-Sim;Yoo, Pyung-Jong;Kim, Gi-Gon;Choi, Ji-Yeon;Park, Jong-Hwan;Kim, Seong-Heon;Heo, Jong-Soo;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.69-76
    • /
    • 2015
  • BACKGROUND: Contamination of soils by heavy metals is the serious environmental problem. In particular, industrial processing is one of the main sources of heavy metal contamination. The objective of this study was to investigate the distribution characteristics of heavy metals in soils collected from industrial complex. METHODS AND RESULTS: In this study, the soil contamination and enrichment factor (EF) of heavy metals were investigated in three national industrial complexes such as Yeosu, Ulsan and Sihwa Banwal industrial complexes. The target heavy metals includes Cd, Cu, As, Hg, Pb, Cr, Zn, and Ni. The results showed that the contents of Cd, Hg, Pb, Zn and Ni in Yeosu and the contents of Cu, As and Cr in Sihwa Banwal were higher than in any other industrial complex. The results of principal component analysis(PCA) in Yeosu, Ulsan and Sihwa Banwal complex could be explained up to approximately 81.4, 69.1 and 70.9% by two factor, respectively. Enrichment factors of Cd, Pb and Zn in all the investigated industrial complexes were above 1.0 that was the value judged to be a high contamination. And EF of Cr was above 1.0 in Sihwa Banwal complex. EF of Zn in all sites was generally high from the other heavy metals. CONCLUSION: Therefore, soils maybe significantly affected by heavy metals (especially, Cd, Pb and Zn) present in the emissions from industrial complexes.

Fusarium moniliforme Detected in Seeds of Corn and Its Pathological Significance (옥수수 종자(種子)에서 검출(檢出)된 Fusarium moniliforme와 그 병리학적(病理學的) 중요성(重要性))

  • Kim, Wan-Gyu;Oh, In-Seok;Yu, Seung-Hun;Park, Jong-Seong
    • The Korean Journal of Mycology
    • /
    • v.12 no.3
    • /
    • pp.105-110
    • /
    • 1984
  • Seven seed samples of corn obtained from Kangweon Provincial Office of Rural Development, Kerea were tested for seed-borne fungi, and found that all the samples tested were infected with Fusarium moniliforme to an extent of $6.0{\sim}79.5%$. Severely infected seed samples showed poor germination on blotter. Seed component plating showed that the fungus present not only in tip caps, pericarps and endosperms, but also in embryos. Heavy infection of the fungus caused severe seed rot and seedling blight in soil, but the damage was not severe and many plants grew without any symptoms when the seeds with light infection were sown in soil. However the fungus was frequently detected from inside of the stems of healthy looking seedlings. The results indicate that the fungus transmit from seed to plant systemically. In inoculation experiments, the fungus produced stem rots on corn plants of 110 days old. The cultivar of Hwangok 3 was revealed more susceptible to the fungus than that of Suweon 19.

  • PDF

Changes in Soil Physical Properties in Various Sizes of Container as Influenced by Packing Amount of Coir Dust Containing Root Media (다양한 규격의 포트에서 코이어더스트를 포함한 혼합상토의 충전밀도 차이에 의해 유발된 물리성 변화)

  • Park, Eun Young;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.720-725
    • /
    • 2013
  • When highly shrinkable materials such as coir dust are major component of root media, the degrees of compaction during container filling of root media severely influences the physical properties of root media. It results in the changes in total porosity (TP), container capacity (CC) and air-filled porosity (AFP). This research was conducted to secure the fundamental information in changes of soil physical properties as influenced by the compaction of root media during container filling. To achieve this, three root media were formulated by blending coir dust (CD) with expanded rice hull (CD + ERH, 8:2, v/v), carbonized rice hull (CD + CRH, 6:4) and ground and raw pine bark (CD + GRPB, 8:2). Based on the optimum bulk density, the amount of root media filled into 6.0, 7.5, 8.5, 10.5 and 12.5 cm were adjusted to 90, 100, 110, 120 and 130% based on the weight of root media. Then the changes in TP, CC, and AFP were measured. Elevation of the packing amount of root media in all sizes of pot resulted in the decrease of TP. But the decrease was more severe in CD + ERH and CD + CRH than those in CD + GRPB. The CC also decreased gradually as the packing amounts were elevated in three root media, but the decreases were severe as the container sizes became larger. The AFP decreased drastically by the elevation of the packing amount of root media in all sizes of pot. The AFP was the highest in CD + CRH medium when pot sizes were smaller than 7 cm, but that was the highest in CD + ERH when the pot sizes were larger than 8.5 cm among the 3 root media tested. In this research, the elevation of packing amount of three root media influenced more severely the AFP rather than CC. This result indicates that the packing amount should be controlled to maintain appropriate level of AFP because AFP rather than CC influence severely crop growth. The results obtained through this study can be used to predict the changes in physical properties of root media as influenced by packing amount in various sizes of pots.

Impact of Elevated Carbon Dioxide, Temperature, and Drought on Potato Canopy Architecture and Change in Macronutrients (상승된 이산화탄소와 온도 그리고 한발 영향에 따른 감자의 군락 형태와 무기영양 변화)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.164-173
    • /
    • 2018
  • Elevated atmospheric carbon dioxide concentration ($CO_2$) is a major component of climate change, and this increase can be expected to continue into the crop and food security in the future. In this study, Soil-Plant-Atmosphere-Research (SPAR) chambers were used to examine the effect of elevated $CO_2$, temperature, and drought on the canopy architecture and concentration of macronutrients in potatoes (Solanum tuberosum L.). Drought stress treatments were imposed on potato plants 40 days after emergence. Under AT+2.8C700 (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$), at maximum leaf area, elevated $CO_2$, and no drought stress, a significant increase was observed in both the aboveground biomass and tuber, and for the developmental stage. Even though $CO_2$ and temperature had increased, AT+2.8C700DS (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$ under drought stress) under drought stress showed that the leaf area index (LAI) and dry weight were reduced by drought stress. At maturity, potatoes grown under $CO_2$ enrichment and no drought stress exhibited significantly lower concentrations of N and P in their leaves, and of N, P, and K in tubers under AT+2.8C700. In contrast, elevated $CO_2$ and drought stress tended to increase the tuber Mg concentration under AT+2.8C700DS. Plants grown in AT+2.8C700 had lower protein contents than plants grown under ATC450 (30-year average temperature at $400{\mu}mol\;mol^{-1}$ of $CO_2$). However, plants grown under AT+2.8C700 showed higher tuber bulking than those grown under AT+2.8C700DS. These findings suggest that the increase in $CO_2$ concentrations and drought events in the future are likely to decrease the macronutrients and protein concentrations in potatoes, which are important for the human diet.

Disinfection of Fusarium-infected Rice Seeds by Prochloraz and Gaseous Chlorine Dioxide

  • Jeon, Young-ah;Lee, Young-yi;Lee, Ho-sun;Sung, Jung-sook;Lee, Seokyoung
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.25-25
    • /
    • 2014
  • Three species of Fusarium, F. fujikuroi, F. verticillioides and F. proliferatum, are known to be associated with bakanae disease of rice [1, 2]. F. fujikuroi infects rice flowers and survive in endosperm and embryo of the seeds. Infected seed is an important source of primary inoculum of pathogens [3]. Seeds of rice (Oryza sativa cv. Boramchan) collected from bakanae-infected field were found to be 96% infected with Fusarium sp., 52% with F. fujikuroi, 42% with F. verticillioides, and 12% with F. proliferatum as determined by incubation method and species-specific PCR assays. F. fujikuroi was detected at lemma/palea, endosperm and embryo whereas F. verticillioides and F. proliferatum were recovered only from lemma/palea by means of component plating test. Seed disinfection methods have been developed to control bakanae disease and prochloraz has been most widely used for rice seeds. Two chemicals formulated with prochloraz (PC 1) and prochloraz + hexaconazole (PC 2) that inhibit biosynthesis of ergosterol strongly reduced the incidence of Fusarium spp. on selective media to 4.7% and 2.0%, respectively. Disease symptoms of rice seedlings in nursery soil were alleviated by chemical treatment; seedlings with elongated leaves or wide angle between leaf and stem were strikingly reduced from 15.6 to 3.2% (PC 1) and 0 (PC 2), stem rots were reduced from 56.9 to 26.2% (PC 1) and 32.1% (PC 2), and normal seedling increased from 0.4 to 13.3% (PC 2). Prochloraz has some disadvantages and risks such as the occurrence of tolerant pathogens [4] and effects on the sterol synthesis in animals and humans [5]. For these reasons, it is necessary to develop new disinfection method that do not induce fungal tolerance and are safe to humans and animals. Chlorine dioxide ($ClO_2$), that is less toxic, produces no harmful byproducts, and has high oxidizing power, has been reported to be effective at disinfection of several phytopathogenic fungi including Colletotrichum spp. and Alternaria spp. [6]. Gaseous $ClO_2$ applied to rice seeds at a concentration of 20 ppm strongly suppressed mycelial growth of Fusarium fujikuroi, F. verticillioides and F. proliferatum. The incidence of Fusarium spp. in dry seed with 8.7% seed moisture content (SMC) tended to decrease as the concentration of $ClO_2$ increased from 20 to 40 ppm. Applying 40 ppm $ClO_2$ at 90% relative humidity, incidence was reduced to 5.3% and resulted in significant reduction of disease symptoms on MS media. In nursery soil, stem rot was reduced from 56.9 to 15.4% and the number of normal seedlings increased from 0.4 to 25.5%. With water-soaked seeds (33.1% SMC) holding moisture in the endosperm and embryo, the effectiveness of disinfection using $ClO_2$ increased, even when treated with only 20 ppm for four hours. This suggests that moisture was a key element for action of $ClO_2$. Removal of the palea and lemma from seeds significantly decreased the incidence of Fusarium spp. to 3.0%. Seed germination appeared to decrease slightly by water-soaking at $30^{\circ}C$ because of increased SMC and by physical damage of embryos from hulling. These results indicate that the use of gaseous $ClO_2$ was effective as a means to disinfect rice seeds infected with Fusarium spp. and that moisture around the pathogens in the seed was an important factor for the action of $ClO_2$. Further investigations should be conducted to ascertain the best conditions for complete disinfection of Fusarium spp. that infect deep site of rice seeds.

  • PDF

Geomorphic Features of Bing-gye Valley Area(Kyongbuk Province, South Korea) -Mainly about Talus- (의성 빙계계곡 일대의 지형적 특성 -테일러스를 중심으로-)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.49-64
    • /
    • 1998
  • Bing-gye valley(Kyongbuk Province, South Korea) is well known as a tourist attraction because of its meteorologic characteristics that show subzero temperature during midsummer. Also, there are some interesting geomorphic features in the valley area. Therefore, the valley is worth researching in geomorphology field. The aim of this paper is to achieve two purposes. These are to clarify geomorphic features on talus within Bing-gye valley area, and to infer the origin of Bing-gye valley. The main results are summarized as follows. 1) The formation of Bing-gye valley It would be possible to infer the following two ideas regarding the formation of Bing-gye valley. One is that the valley was formed by differential erosion of stream along fault line, and the other is that the rate of upheaval comparatively exceeded the rate of stream erosion. Especially, the latter may be associated with the fact that the width of the valley is much narrow. Judging that the fact the width of the valley is much narrow, compared with one of its upper or lower valley, it is inferred that Bing-gye valley is transverse valley. 2) The geomorphic features of talus (1) Pattern It seems to be true that the removal of matrix(finer materials) by the running water beneath the surface can result in partly collapse hollows. Taluses are tongue-shaped or cone-shaped in appearance. They are $120{\sim}200m$ in length, $30{\sim}40m$ in maximum width. and $32{\sim}33^{\circ}$ in mean slope gradient. The component blocks are mostly homogeneous in size and shape(angular), which reflect highly jointed free face produced by frost action under periglacial environment. (2) Origin On the basis of previous studies, the type of the talus is classified into rock fall talus. When considered in conjunction with the degrees of both weathering of blocks and hardness of blocks, it can be explained that the talus was formed under periglacial environment in pleistocene time. (3) The inner structure of block accumulation I recognize a three-layered structure in the talus as follows: (a) superficial layer; debris with openwork texture at the surface, 1.3m thick. (b) intermediate layer: small debris(about 5cm in diameter) with fine matrix(including humic soil), 70cm thick. (c) basal layer: over 2m beneath surface, almost pure soil horizon without debris (4) The stage of landform development Most of the blocks are now covered with lichen, and/or a mantle of weathering. It is believed that downslope movement by talus creep well explains the formation of concave slope of the talus. There is no evidence of present motion in the deposit. Judging from above-mentioned facts, the talus of this study area appears to be inactive and fossil landform.

  • PDF