• Title/Summary/Keyword: Soil Cement

Search Result 614, Processing Time 0.024 seconds

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.

Mechanical Characteristics of Kaolin-cement Mixture (카올린-시멘트 혼합재료의 공학적 특성)

  • Lee, Kyu-Hwan;Lee, Song;Yi, Chang-Tok
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.113-125
    • /
    • 2002
  • Ground improvement technique of cement stabilization via Deep Soil Mixing with dry cement is gaining popularity, particularly in Japan and other parts of Southeast Asia and in Scandinavia. Cement can be mixed with deep soft clay deposits, typical of marine environments, to improve the bearing capacity and/or reduce the compressibility of the material so that an otherwise poor site can be developed. However, the strength/deformation behaviour and resulting soil structure of the clay-cement mixture is presently not well understood with respect to both dry and wet mix methods. An extensive laboratory test was carried out to determine the mechanical characteristics of kaolin-cement, with some brief examination of the effects of curing environment. Laboratory tests include triaxial tests, unconfined compression tests, isotropic consolidation testis and oedometer tests. Cement contents up to 10 percent were considered and water curing was employed. Samples were cured for 7 to 112 days while submerged in distilled water. Conventional laboratory tests were also performed. In this paper, the laboratory testing program is described and various sample preparation techniques are discussed. Preliminary triaxial compression test results and trends at varying moisture contents, cement contents, confining pressures and curing times will be presented.

Study on the Mechanical Properties of Low Mix Soil-Cement (저배합 흙시멘트의 역학적 특성에 관한 시험적 연구)

  • 공길용;김현태;노종구;홍병만
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.127-134
    • /
    • 2001
  • In order to expand agricultural lands in the western and southern coasts of Korean Peninsula, coarse soils excavated from hillsides have been used as fill materials for reclamation. In order to tackle with the problems and to confirm availability, research on soil improvement involve mixing cement to the fine wet soils. Required undrained shear strength$(C_u)$ for fill material was analysed to be 0.34~1.2 $kgf/cm^2$. It has been known that when cement is added to high water content marine clay its unconfined compression strength increased to 2 $kgf/cm^2$. Consolidation results show that pre-consolidation pressure increased to 1.8 $kgf/cm^2$and 3.4 $kgf/cm^2$ with the addition of 3% and 5% of cement respectively. This result shows that low-height embankments could be constructed without significant compression. Since the effectiveness of improvement may be different site by site, the mix design for each site is necessary in order to optimize it. The process is first to determine aimed shear strength and then optimum mix ratio of cement after carrying out a series of tests.

  • PDF

Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment

  • Yoobanpot, Naphol;Jamsawang, Pitthaya;Krairan, Krissakorn;Jongpradist, Pornkasem;Horpibulsuk, Suksun
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.1005-1016
    • /
    • 2018
  • This paper presents an investigation on the properties of two types of cement kiln dust (CKD)-stabilized dredged sediments, silt and clay with a comparison to hydrated lime stabilization. Unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were conducted to examine the optimal stabilizer content and classify the type of highway material. A strength development model of treated dredged sediments was performed. The influences of various stabilizer types and sediment types on UCS were interpreted with the aid of microstructural observations, including X-ray diffraction and scanning electron microscopy analysis. The results of the tests revealed that 6% of lime by dry weight can be suggested as optimal content for the improvement of clay and silt as selected materials. For CKD-stabilized sediment as soil cement subbase material, the use of 8% CKD was suggested as optimal content for clay, whereas 6% CKD was recommended for silt; the overall CBR value agreed with the UCS test. The reaction products calcium silicate hydrate and ettringite are the controlling mechanisms for the mechanical performance of CKD-stabilized sediments, whereas calcium aluminate hydrate is the control for lime-stabilized sediments. These results will contribute to the use of CKD as a sustainable and novel stabilizer for lime in highway material applications.

Characteristics and Recycling of Sewer Sediments from Land Use (토지이용별 하수관거 퇴적토의 특성과 재활용)

  • Won, Chul-hee;Lee, Byung-won;Choi, Joong-dae;Rim, Jay-myoung
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.404-410
    • /
    • 2009
  • In this study, research for physical and chemical characteristics were conducted through analysis of sediments, grading and heavy metals (e.g., Mn, Cu, Cd, Zn and Pb ) in sewers which are classified by drainage types. After that, cement solidification and yellow soil calcinations made heavy metals stabilized and then, ways of recycling it were examined. The grain size distribution of all sediments was relative graded. When evaluating heavy metal pollution through index of geoaccumulation (Igeo), Cu showed moderately pollution or strong pollution in forest and street site and Zn was assessed by moderately pollution in military, residential, and street site. Analysis of Pearson Correlation coefficient of heavy metal indicated that all items in street site have tight relationship respectively. Especially, Cd-Zn, Cu-Pb, Cu-Mn, and Pb-Mn have relationship at 99% confidence intervals in statistical analysis. Recycling it with cement solidification was satisfied with compressive strength standard under 55% deposit contents and Zn, Pb, Mn were stabilized effectively. If time and temperature plasticity and compressive strength would be standard, it is revealed that yellow soil calcinations is valuable aggregate when it has 50-60 Wt% contents. When considering economic feasibility and stabilization of heavy metals, cement solidification would be more appropriate than yellow soil calcinations as solution to recycling.

Applicability of Solidified Soil as a Filling Materials in the Drilling of the Bored-precast Pile (매입말뚝 시공시 현장토를 활용한 고화처리 충전재의 현장 적용성 평가)

  • Kim, Khi-Woong;Park, Jeong-Jun;Han, Byung-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.21-29
    • /
    • 2014
  • The use of filling material based on cement paste is inefficient at field construction because it needs a lot of the charging mass. In addition, it has environmental problem according to the large amount of cement use because its strength is also larger than criterion. The excavated soil with stabilizer can be used as the filling materials when the bored pile is constructed. Therefore, this paper describes field application of solidified soil for economical efficiency and environment-friendly. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. As results, the flowability, segregation and bleeding, and bond strength of filling materials was a good performance than that of the existing cement paste. But the skin friction of pile by PDA was slightly decreased than that of the existing cement paste. However, as pile filling materials, and in terms of economics and environment, the applicability of filling material is considered very effective.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Applicability Evaluation of Eco-Friendly Binder Material using Desulfurized Dust in Deep Cement Mixing Method (탈황분진을 활용한 친환경 안정재의 심층혼합공법 적용성 평가)

  • Ko, Hyoung-Woo;Seo, Se-Gwan;An, Yang-Jin;Kim, You-Seong;Cho, Dae-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.1-12
    • /
    • 2016
  • In this study, laboratory mixture design test and field test were performed to evaluate applicability of eco-friendly binder material (CMD-SOIL) using desulfurized dust in deep cement mixing method (DCM). As a result of laboratory mixture design test, the uniaxial compressive strength of CMD-SOIL was up to 1.136 times bigger than slag cement by changing the water content, mixing rate, and W/B. Also, it had shown the strength up to 1.222 times bigger in shell content and up to 1.363 times in mixing of floating soil. As a result of field test, field strength/laboratory design criterion strength ratio (${\lambda}$) is shown 0.77. And this result was similar to earlier studies. From this result, CMD-SOIL can show the same efficiency compared with existing binder.

Strength and Deformation Characteristics of Lightweight Foamed Soil Using In-situ Soil (현장발생토를 활용한 경량기포흔합토(LWFS)의 강도 및 변형특성)

  • Yoon Gil-Lim;You Seung-Kyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.125-131
    • /
    • 2004
  • A series of unconfined compression tests were carried out firstly to investigate mechanical behaviors of Lightweight Foamed Soil (LWFS) which is composed of dredged soils, cement and air foam. And secondly, to compare the difference of mechanical characteristic of LWFS with previous research conclusions (Yoon & Kim,2004) by using different dredged soils sampled at Joong-Ma in Gwangyang harbor area. Based on numberous laboratory experiments, it was found that deformation coefficient $(E_{50})$ of LWFS increases with increasing cement contents but decreases with increasing initial water contents of dredged soils. Appropriate regression formula (normalizing factor scheme) which considers relationship between LWFS composing elements, initial water contents of dredged soils, cement, air foam, and uniaxial compression strength or LWFS is proposed for practical applications. Finally, it was clear that, to apply LWFS method to practical projects, certain laboratory test would be necessary to take considerations of soil locality because mechanical charac-teristics of LWFS were surely dependent upon their sampled locations and properties.