• Title/Summary/Keyword: Soil Aggregation

Search Result 58, Processing Time 0.034 seconds

Environmental Characteristics of the Yellow Water Zones in the Estuary of Keum River (금강 하구에 나타나는 황색 수색대의 환경특성)

  • YU Byeong-Cheol;YOU Sun-Jae;CHO Ju-Whan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.1
    • /
    • pp.97-105
    • /
    • 1994
  • To investigate the characteristic and the cause of the yellow water zones in the estuary of keum River, physico-chemical measurement and analyses were made on seawater samples collected from 18 stations in May, July, august, October in 1992, and February in 1993 respectively. The yellow water zones were recorded as grade 9 on the forel water color meter and appeared consistently at the stations 1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15 and 17 through out the year. The organically polluted matter gradually increased in the study area. The nutrient concentrations of inner waters of water zones were higher than that of the surrounding waters and were over red tide criteria levels. But abnormal aggregation of phytoplanktons could not occur because of lack of light and high current velocity. In Conclusion, this yellowish colored water zone was caused not by abnormal aggregation of phytoplanktons but by inorganic matters such as sand or soil particles, $85\%$ of which consisted of suspended solids.

  • PDF

Growth of Panax ginseng Affected by the Annual Change in Physico-chemical Properties of Ginseng Cultivated Soil (연근별 토양이화학성이 인삼의 생육에 미치는 영향)

  • 이일호;박찬수;송기준
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.84-91
    • /
    • 1989
  • This study was conducted to Investigate the effects of physico-chemical soil properties on the growth and yield of ginseng. 1 In the field survey, the yields of 6 year old ginseng were 2.46 Kg/3.3$m^2$, 2.13 Kg/3.3$m^2$, 1.44 Kg/3.3 $m^2$ in clay loam, loam and sandy loam soils, respectively 2. The missing plant rate for il year old ginseng were 33.6% and 51.6% in clay loam and sandy loam soils, respectively : the stem length and stem diameter of ginseng plants in sandy loam soil were smaller than those in clay loam soil. 3. Soil aggregation and porosity we're slightly higher in 6 year old ginseng fields than in 2 year ones. 4. Inorganic-N increased in 2 year and 3 year old ginseng fields reaching up to 100-120ppm, however it 1 decreased to 75 ppm, 34 ppm and 25 ppm in 4, 5 and 6 year old ginseng fields, respectively, It varied 1 more greatly in sandy loam soil than in clay loam. 5. The $P_2O_5$, K, Ca, and Mg contents differed little with plant age. Sandy loam had high N and $P_2O_5$ contents but low cation contents. 6. The yield of 6 year old ginseng fields were significantly correlated with clay contents and porosity. The missing Plant rate of 6 year old ginseng had a positive correlations with sand. and N contents.

  • PDF

Soil Physical Properties and Organic Matter (토양(土壤)의 물리성(物理性)과 유기물(有機物))

  • Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.3
    • /
    • pp.145-160
    • /
    • 1979
  • The effects of organic material application on soil physical properties were reviewed in relation to soil productivity. The organic matter contents and soil physical properties of the cultivated land in Korea were summarized and the effects of organic matter were compared in terms of land uses and soil types. Soil physical properties related to crop yield potential, such as soil aggregation, permeability, water holding capacity, erodibility, and compactibility, were used in evaluating the effects of organic materials as a soil physical amendment. The benefical effects of organic matter addition on soil physical conditions include (1) better aeration and increased infiltration in silty and clayey soils, (2) increased water holding capacity and moisture availability in sandy soils, (3) decreased soil erodibility, and (4) increased resistance to compaction. It is, therefore, concluded that continuous application of organic materials could greatly improve the various soil physical properties and favor the growth and yield of crops. A high rate of organic matter addition could contribute to reducing not only the soil erosion on sloping land, but also the possible detrimental effect of farm mechanization. In general, the effects of organic matter on soil physical improvement were estimated to be much higher in upland than in paddy. Organic matter would have a more pronounced effect on low productive lands such as heavy clayey or sandy soils and newly reclaimed soil. The optimum level of soil organic matter content was estimated to be about 3.0 to 3.5% for the best soil physical condition. Since the organic matter contents of the cultivated lands in Korea are much lower than optimum level, it would be desiable to use more organic materials to soil for the increase of soil productivity, continuation of stabilized high productivity and soil erosion control.

  • PDF

Pseudomonas oleovorans Strain KBPF-004 Culture Supernatants Reduced Seed Transmission of Cucumber green mottle mosaic virus and Pepper mild mottle virus, and Remodeled Aggregation of 126 kDa and Subcellular Localization of Movement Protein of Pepper mild mottle virus

  • Kim, Nam-Gyu;Seo, Eun-Young;Han, Sang-Hyuk;Gong, Jun-Su;Park, Cheol-Nam;Park, Ho-Seop;Domier, Leslie L;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • Efforts to control viral diseases in crop production include several types of physical or chemical treatments; antiviral extracts of a number of plants have also been examined to inhibit plant viral infection. However, treatments utilizing naturally selected microorganisms with activity against plant viruses are poorly documented. Here we report isolation of a soil inhabiting bacterium, Pseudomonas oleovorans strain KBPF-004 (developmental code KNF2016) which showed antiviral activity against mechanical transmission of tobamoviruses. Antiviral activity was also evaluated in seed transmission of two tobamoviruses, Pepper mild mottle virus (PMMoV) and Cucumber green mottle mosaic virus (CGMMV), by treatment of seed collected from infected pepper and watermelon, respectively. Pepper and watermelon seeds were treated with culture supernatant of P. oleovorans strain KBPF-004 or control strain ATCC 8062 before planting. Seeds germinated after treatment with water or ATCC 8062 yielded about 60% CGMMV or PMMoV positive plants, whereas < 20% of KBPF-004-treated seeds were virus-infected, a significantly reduced seed transmission rate. Furthermore, supernatant of P. oleovorans strain KBPF-004 remodeled aggregation of PMMoV 126 kDa protein and subcellular localization of movement protein in Nicotiana benthamiana, diminishing aggregation of the 126 kDa protein and essentially abolishing association of the movement protein with the microtubule network. In leaves agroinfiltrated with constructs expressing the coat protein (CP) of either PMMoV or CGMMV, less full-size CP was detected in the presence of supernatant of P. oleovorans strain KBPF-004. These changes may contribute to the antiviral effects of P. oleovorans strain KBPF-004.

Isolation and Characterization of Extracellular Polymeric Substances (EPS)-producing bacteria for restoration of burnt forest soils (산불토양복원을 위한 Extracellular Polymeric Substances (EPS) 생성세균의 분리, 동정 및 특성에 관한 연구)

  • Lee, Gun-Young;Song, In-Geun;Chung, Jae-Chun;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.4
    • /
    • pp.139-147
    • /
    • 2004
  • We have isolated two bacterial strains, FM-02 and AL-02, which produced EPS from forest soil for the restoration of forest fire by promoting soil aggregation. FM-02 was found to be Gram negative rod and belong to Beta Proteobacterium sp. through 16s-rDNA sequence analysis, and AL-02 was Gram positive rod and showed 81% of similarity to Zoogloea sp. through the analysis of 16s-rDNA sequence. FM-02 and AL-02 produced about 1.8g and 8.3g of EPS, respectively, per 1L of culture as dry weight. Flocculation activity (FA) was also measured in two strains. FM-02 showed 2.31 FA against active carbon, and AL-02 showed 6.21 FA against kaolin clay. From these results, we expect that AL-02 strain will be applied as a good biological material for the reduction of forest soil erosion by wild and rain after fire through promoting coagulation of soil particles.

  • PDF

Identification of vulnerable region susceptible to soil losses by using the relationship between local slope and drainage area in Choyang creek basin, Yanbian China (중국 연변 조양하 유역의 국부경사와 배수면적의 관계를 이용한 토사유실 우심지역 추출)

  • Kim, Joo-Cheol;Cui, Feng Xue;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.235-246
    • /
    • 2018
  • The main purpose of this study is to suggest a methodology for identifying vulnerable region in Choyang creek basin susceptible to soil losses based on runoff aggregation structure and energy expenditure pattern of natural river basin within the framework of power law distribution. To this end geomorphologic factors of every point in the basin of interest are extracted by using GIS, which define tractive force and stream power as well as drainage area, and then their complementary cumulative distributions are graphically analyzed through fitting them to power law distribution to identify the sensitive points within the basin susceptible to soil losses with respect to scaling regimes of tractive force and stream power. It is observed that the range of vulnerable region by scaling regime of tractive force is much narrower than by scaling regime of stream power. This result seems to be due to the tractive force is a kind of scale dependent factor which does not follow power law distribution and does not adequately reflect energy expenditure pattern of river basins. Therefore, stream power is preferred to be a more reasonable factor for the evaluation of soil losses. The methodology proposed in this study can be validated by visualizing the path of soil losses, which is generated from hill-slope process characterized by local slope, to the valley through fluvial process characterized by drainage area as well as local slope.

Effect of Different Cultivation Systems on Soil Glomalin Content and Nutrient Uptake of Strawberry in Controlled Horticultural Land (시설 딸기 재배형태가 토양 글로말린 함량과 양분흡수량에 미치는 영향)

  • Min, Se-Gyu;Lee, Seung-Ho;Nam, Sang-Hoe;Choi, Yong-Uk;Lee, Su-Yeol;Park, Su-Seon;Lee, Seong-Tae;Kim, Eon-Seok;Song, Won-Doo;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.452-456
    • /
    • 2011
  • Glomalin has important roles in soil aggregation in agricultural lands including controlled horticultural lands. The objective of this study was to measure total glomalin content of soils treated conventional farming system (CFS), conventional farming system without pesticides (CFSWP), and organic farming system (OFS) for strawberry cultivation under greenhouse in Goseong-gun, Korea. The average concentration of total glomalin in the soils was significantly higher in the OFS ($2.00mg\;g^{-1}$) compared to the CFS ($1.68mg\;g^{-1}$). In addition, soil microbial biomass C content was 4.9 times higher in the OFS ($821mg\;kg^{-1}$) compared to the CFS ($169mg\;kg^{-1}$). Nitrogen uptake rate of strawberry was higher in the OFS (52.4%) than that in the CFS (13.0%). Furthermore, yield of strawberry in OFS ($51Mg\;ha^{-1}$) was significantly higher compared to CFS ($35Mg\;ha^{-1}$).

Assessment of Environmental Impact on the Severely Soil-Eroded Area by heavy Rainfall (집중호우로 인한 토양침식 우심지역 환경영향평가)

  • Hyun, Byung-Keun;Song, Kwan-Cheol;Jung, Sug-Jae;Sonn, Yeon-Kyu;Kim, Lee-Yeol;Kim, Sun-Kwan;Kwak, Han-Kang;Jung, Ji-Ho;Choi, Jung-Won;Jung, Ki-Yeol;Kim, Chun-Sig;Hyun, Geun-Soo;Pyeon, In-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.118-130
    • /
    • 2007
  • The steep-sloped agricultural land was severely damaged by rainfall events during July and August every year. The objective of this study was to investigate an effects of intensive rainfall to the soil properties of the steep-sloped agricultural land. Survey sites including the Sacheon myeon area were located in Gangneung, those were severely damaged from a forest fire in April 2000. Surveys were taken at these sites after two years of forest fire and severe rainfall events in August 2002, which included an event that poured with 870 mm of rainfall in a day. After this storm, soil erosion, burying, and flooding were observed. Severe soil loss was found at lower soil-depths, greater slopes, longer slope lengths, and concave landscapes. Soil loss and land slides were often found at areas with having a coarser textures, higher bulk densities, lower water holding capacity, and lower rates of soil aggregation. Crop growth stagnation was found at the site of crop restoration because of low soil fertility and poor drainage caused by the abrupt textural changes. In conclusion, it is necessary to manage the steep-slope agricultural land based on environmental impact assessment data of macro morphological and physical characteristics by intensive rainfall.

Transport behavior of PVP (polyvinylpyrrolidone) - AgNPs in saturated packed column: Effect of ionic strength and HA (포화 컬럼실험에서 이온강도 변화 및 유기물질 출현에 의한 PVP로 코팅된 은나노 입자의 거동 연구)

  • Heo, Jiyong;Han, Jonghun;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.263-270
    • /
    • 2016
  • Recent Engineered nanoparticles were increasingly exposed to environmental system with the wide application and production of nanomaterials, concerns are increasing about their environmental risk to soil and groundwater system. In order to assess the transport behavior of silver nanoparticles (AgNPs), a saturated packed column experiments were examined. Inductively coupled plasma-mass spectrometry and a DLS detector was used for concentration and size measurement of AgNPs. The column experiment results showed that solution chemistry had a considerable temporal deposition of AgNPs on the porous media of solid glass beads. In column experiment, comparable mobility improvement of AgNPs were observed by changing solution chemistry conditions from salts (in both NaCl and $CaCl_2$ solutions) to DI conditions, but in much lower ionic strength (IS) with $CaCl_2$. Additionally, the fitted parameters with two-site kinetic attachment model form the experimental breakthrough curves (BTCs) were associated that the retention rates of the AgNPs aggregates were enhanced with increasing IS under both NaCl and $CaCl_2$ solutions.

Influence of Gypsum, Popped Rice Hulls and Zeolite on Contents of Ca2+, Mg2+, Na+, K+ in Reclaimed Tideland Soils in Kyehwado (계화도 간척지에서 석고, 팽화왕겨 및 제올라이트 처리가 토양 중 양이온 함량에 미치는 영향)

  • Baek, Seung-Hwa;Lee, Sang-Uk;Lim, Hyo-Bin;Kim, Dae-Geun;Kim, Seong-Jo
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • The effect of application of gypsum (G), popped rice hulls (PRH), and zeolite (Z) in exchangeable cations concentrations of reclaimed tideland soil in Kyehwado was investigated for 3 years from 2004 to 2006 in a pot experiment with bermuda grass (Cynodon dactylon). Treatments with three soil conditioner and with three applications were established with three replications; G1 (1,550 kg $10a^{-1}$), G2 (3,100), and G3 (6,200) for gypsum, H1 (1,000), H2 (2,000), and H3 (3,000) for PRH, and HZ1 (200), HZ2 (400), and HZ3 (800) for co-application of zeolite with PRH at the 1,500 kg $10a^{-1}$. At 60, 90, 120 days after treatment (DAT), exchangeable cations ($K^+$, $Na^+$, $Mg^{2+}$, and $Ca^{2+}$) were analyzed Gypsum application significantly decreased $k^+$, $Na^+$, $Mg^{2+}$ in the soil probably due to exchange and subsequent leaching of these cations by $Ca^{2+}$ from the gypsum applied. Overall, $K^+$ concentration was gradually decreased by continuous application of soil conditioners and was in the order of 2004>2005>2006 regardless of the kinds and application rate of soil conditioners. Comparing $K^+$ concentrations among the soil conditioners in the same year, its concentration was in the order of gypsum$Na^+$ concentration; i.e. $Na^+$ concentration was in the order of gypsum$\ll$PRH$Mg^{2+}$ also showed a similar pattern to $Na^+$. Gypsum application significantly increased $Ca^{2+}$ concentration and in the gypsum treated soil $Ca^{2+}$ concentration increased with years.