• Title/Summary/Keyword: Soil Acidity

Search Result 285, Processing Time 0.024 seconds

The Effect of Soil Texture on Fruits and Growth Properties in Rabbiteye Blueberries

  • Kim, Hong-lim;Kwack, Yong-Bum;Lee, Mock-hee;Chae, Won-Byoung;Hur, Youn-Young;Kim, Jin-Gook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.582-587
    • /
    • 2015
  • This study was conducted to compare the plant growth and fruit quality of blueberries grown in different soil textures of Korea, in order to utilize the results for stable production and soil improvement. Rabbiteye blueberry cultivars 'Tifblue' and 'Baldwin' were planted and grown for three years from 2013 in wagner pot (1 $2000a^{-1}$) in a greenhouse of Namhae Sub-station, Institute of Horticultural and Herbal Science. The plants were grown in four soil textures, sand, sandy loam, loam and silt loam, and nutrient uptake and growth characteristics of plants were investigated. Leaf nitrogen and phosphorus contents of two cultivars grown in different soil textures ranged between 8.6 to $10.5gkg^{-1}$, which was lower than appropriate level for rabbiteye blueberry. However, the contents of potassium, calcium and magnesium in leaves were appropriate levels as $2.29{\sim}3.62gkg^{-1}$, $4.46{\sim}5.46gkg^{-1}$ and $1.45{\sim}2.12gkg^{-1}$, respectively. Nitrogen and phosphate contents in leaves were higher in the two cultivars grown in silt loam soil. There was no significant difference in plant volume and root dry weight among four soil textures in two cultivars. However, dry weight of leaves and branches were highest in loam soil. Fruit production was highest in loam and silt loam soil in two cultivars, showing negative correlation with the amount of sand in soil. However, sugar and acidity showed no correlation with sand content in soil. These results show the limit to the blueberry growth in soil that has no nutrient holding capacity; however, most of Korean soils that have good nutrient holding capacity can produce competitive fruits if the drainage is improved.

Seasonal Variations of De-icing Salt Ions Harvested from Soils and Plants according to the Salt Damage of Pinus densiflora f. multicaulis on Roadsides (가로변 반송 염해정도에 따른 토양 및 식물체 내 염류이온의 계절별 변화)

  • Lee, Jae-Man;Park, Sun-Young;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.395-402
    • /
    • 2020
  • This study was conducted to analyze seasonal variations of de-icing salt ions harvested from soils and plants according to salt damage of Pinus densiflora f. multicaulis, a evergreen conifer, on roadsides. Pinus densiflora f. multicaulis was divided into three groups referred to SD, ND, and WD (serious salt damage (SD) = 71-100%, normal salt damage (ND) = 31-70%, and weak salt damage (WD) = 0-30%) based on the degree of visible foliage damage, and measured acidity (pH), electrical conductivity(EC), and de-icing salt ions (K+, Ca2+, Na+, and Mg2+) harvested from soils and plants. The results indicated that acidity, electrical conductivity, and de-icing salt ions of soils and plants were significantly affected by seasonal variation and salt damage. In addition, a strong positive liner relationship was observed in plants between the concentration of de-icing salts and salt damage in spring, while the relationship among seasonal variation and salt damage in soil were not significant. The results from this study has important implications for the management of conifer species in relation to salinity and roadsides maintenance.

A Study on the Structure Characteristics of Planting Ground in Incheon International Airport, Korea (인천국제공항 식재기반 구조 및 토양특성 연구)

  • Lee, Seung-Won;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Yeum, Jung-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.77-91
    • /
    • 2015
  • This study aims to suggest adequate soil management through the analysis of physicochemical properties of soil in the planting grounds of Incheon International Airport, which was constructed on a massive land reclamation site. Study areas were 5 sites at the international business complex, the passenger terminal, the airport support complex, the free trade zone, and the access road. Soil profile analysis showed that 9 plots out of the 27 plots were hardpan and heterospere within 80cm from the soil surface. The earth laid on the ground was categorized as gravel based soil(4 plots), dredged soil from the sea bottom and mixed reclamation materials(2 plots), clay with poor permeability(3 plots) and waste construction material(1 plot). Average soil hardness was $11.5kg/cm^2$ and soil textures were sandy soil, sandy loam and loamy sand. Average soil pH was 6.7 and average organic matter content was 0.7%. Electrical conductivity was 0.0dS/m and exchangeable cation concentrations were $Ca^{2+}$ 3.4cmol/kg, $Mg^{2+}$ 1.5cmol/kg, $K^+$ 0.3cmol/kg and $Na^+$ 1.0cmol/kg. Average cation exchange capacity was 11.0cmol/kg. Although average figures in Solum mostly meet the landscape design criteria, properties of each soil layer showed various values sometimes over the limit. Base saturations were $Ca^{2+}$ 29.9%, $Mg^{2+}$ 13.3% and $K^+$ 3.7% for lower soil, $Ca^{2+}$ 33.3%, $Mg^{2+}$ 17.0% and $K^+$ 2.7% for mid-soil and $Ca^{2+}$ 32.6%, $Mg^{2+}$ 12.2% and $K^+$ 1.9% for upper soil. Exchangeable sodium percentages were 16.4% for lower soil, 7.5% for mid-soil and 4.7% upper soil. Sodium adsorption rates were 0.8 for lower soil, 0.3 for mid-soil and 0.2 for upper soil. Factors affecting to the vegetation growth were heterogeneity and poorness of solum, disturbance of dredged soils, high soil hardness including hardpan in the subsurface soil layer and shallow effective soil depth, high soil acidity, imbalance of base contents, low organic matter content and low available phosphate levels in the soil.

Assessing Soil Fertility Status of Edible Wild Plants Fields in Ulleung Island

  • Park, Sang-Jo;Park, Jun-Hong;Kim, Byung-Sung;Chung, Yun-Hak;Lee, Dong-Jun;Kwon, Oh-Heun;Park, So-Deuk;Lee, Suk-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.368-374
    • /
    • 2016
  • The perennial edible wild plants such as Aster glehnii, Solidago virgaurea subsp. gigantean, Allium ochotense, Athyrium acutipinnulum, Aruncus dioicus var. kamtschaticus and Codonopsis lanceolata have cultivated as the main income crops introduced into the fields about 30 years ago in Ulleung island. Soil samples were collected from 190 fields and assessed the effects of management practices on soil chemical properties at wild edible plant fields under no-till system. The strong acidic soils of pH 5.4 or less were detected in 45% of the soil samples. The level of soil organic matter was being held at mean $63{\pm}28g\;kg^{-1}$, 2.7 times higher than upland soils in Korea. Available phosphate and exchangeable potassium showed more than recommended levels of upland crops as $680{\pm}489mg\;kg^{-1}$ and $1.94{\pm}1.7cmol_c\;kg^{-1}$, respectively. The fields of Solidago and Aster showing strong soil acidity and high level of available phosphate and water soluble $NO_3{^-}$ were distinguished from other crops in analysis of variance and principal component analysis of soil chemicals. These results suggested that high frequency of acidic soil and high levels of available $P_2O_5$, exchangeable $K_2O$ and water soluble $NO_3{^-}$ were accompanied with the use of urea and NPK-fertilizer based on nitrogen in the field. However, further research is needed to understand the appropriate management of fertilization and the prevention of soil acidification for wild edible plants.

Seasonal Variations of Acdity and Chemicstry of Precipitation in Iksan Area (익산지역 강수의 계절별 산성도와 화학성상)

  • 강공언;오인교;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.393-402
    • /
    • 1999
  • Precipitation samples were collected by the wet-only sampling method in Iksan in the northwest of Chonbuk from March 1995 to February 1997. These samples were analyzed for the concentration of ion components, in addition to pH and electrical conductivity. The annual mean pH of precipitation was 4.8 and the seasonal trend of pH was shown to be low in Fall and Winter(4.5), middle-ranged in Spring(4.7) and high in Summer(5.0). The frequency of pH below 5.6 was about 71%. The seasonal pattern of pH frequency was found to be different in each season. In the case of the pH less than 5.0, the frequency was higher in Spring, Fall and Winter than in Summer, especially higher in Fall than in other seasons. The concentrations of analysed ions showed a pronounced seasonal pattern. However, major ion species for all seasons were $NH^+_4,;Ca^{2+};and;Na^+$ among cations and $SO^{2-}_4,;Cl^-;and;NO^-_3$ among anions. The major acidifying species appeared to be $nss-SO^{2-}_4;and;NO^-_3$, and the main bases responsible for the neutralization of precipitation acidity were $nss-Ca^{2+};and;NH^+_4$. The potential acidity of precipitation, pAi, was found to be between 3.0 and 5.0 for total samples, while the measured pH was approximately between 3.9 and 7.8. The seasonal trend of pAi showed a decreasing order: Summer (4.3), Winter(4.0), Spring and Fall(3.8). During the Fall, both pAi and pH were especially very low, which indicated that during this period the potential acidity of precipitation was high but the neutralizing capacity was low. For Spring, pAi was very low but pH was slightly high. This was likely due to the large amount of $CaCO_3$ in the soil particles transported over a long range from the Chinese continent that were incorporated into the precipitation, and then neutralized the acidifying species with its high concentraton.

  • PDF

Explicating morphophysiological and biochemical responses of wheat grown under acidic medium: Insight into to the antioxidant defense and glyoxalase systems

  • Bhuyan, MHM Borhannuddin;Hasanuzzaman, Mirza;Al Mahmud, Jubayer;Hossain, Md. Shahdat;Alam, Mazhar Ul;Fujita, Masayuki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.236-236
    • /
    • 2017
  • Low soil pH causes from $H^+$ rhizotoxicity results in nutrients unavailability in the growing media, inhibits plant growth, development and reduces crop yields. The present study was carried out to reveal morpholophysiological and biochemical responses of wheat (Triticum aestivum L.) to acidity stress. Four wheat varieties viz. BARI Wheat-21, BARI Wheat-25, BARI Wheat-26 and BARI Wheat-30 were used in the study. Eight-day-old seedlings were exposed to different pH levels (3.5, 4.5, 5.5 and 6.5) of growing media. Acidity stress at any level reduced biomass, water, and chlorophyll contents in all the varieties; whereas BARI Wheat-26 showed the least damage. $H^+$ rhizotoxicity also caused oxidative stress through excess production of reactive oxygen species and methylglyoxal which increase lipid peroxidation in all the varieties but the lowest oxidative damage was observed in BARI Wheat-26 due to better performance of the antioxidant defense and glyoxalase systems. Considering the growth, physiological and biochemical attributes BARI Wheat-26 may be considered as acidity stress tolerant, among the variety examined.

  • PDF

Effects of Simulated Acid Rain on Mineral Nutrient Movement in Soil (인공산성비 처리가 토양의 무기양분 이동에 미치는 영향)

  • Ryu, Kwan-Shig
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.362-367
    • /
    • 1998
  • To investigate the effects of simulated acid rain(SAR) on the downward movement of mineral nutrients, SARs of different pH were applied to the soil. SAR of pH 2.0 decreased the soil pH greatly, while SAR of pH 4.0 and 6.0 did not change the soil pH to compare to that of SAR of pH 2.0. Decrease in soil pH was in the order of sandy loam > loam > clay loam. The amoumt of leached exchangeable and soluble bases from the soil due to the penetration of SAR was in the order of Ca >Mg > K. After application of 1200mm SAR of pH 2.0 in to the soil downward mean movements of the exchangeable and soluble bases was in the order of Mg > Ca > K in sandy loam and loam soil and Ca > Mg > K in clay loam soil. Downward movements of the those bases under pH 4.0 into the soil was in the order of Mg > K > Ca in sandy loam and clay loam, and K > Mg > Ca in loam soil. Available phosphorus moved slightly downward with increasing acidity of the SAR.

  • PDF

Effects of Soil Environment on the Growth of Pinus Thunbergii and Zelkova Serrata at the Reclaimed Seaside (임해매립지의 토양환경이 곰솔과 느티나무의 생육에 미치는 영향)

  • 김도균;장병문;김용식
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.4
    • /
    • pp.9-20
    • /
    • 2000
  • The purpose of thus paper is to provide the knowledge on preparing for the planting soil and planting method, and maintenance at the reclaimed seaside. Based on the collected data from the field work, the soil environment, the growth of height, inter-node, tree ring and roots of the two species had been analyzed. The determinant of soil factors, affecting the growth of trees, turned out to be six elements such as soil hardness, soil acidity, potassium, calcium, magnesium and total nitrogen. Because the variances of both growth of tree height and tree ring are greater than that of root, the growth characteristics of ground parts of the species by the individual tree species is more dynamical than those of underground parts. From the mean difference test the growth of height, root between Pinus thunbergii and Zelkova serrata, have been turned out to be statistically significant at 5 percent level. Pinus thunbergii is a sapling, so it grows faster than Zelkova serrata while Pinus thunbergii has better roots system than Zelkova serrata. From the correlation analysis, it showed the very strong correlation between tree height growth and potassim, while the lowest correlation coefficient was between soil hardness and potassim as 0.744. From the multiple regression analysis, both soil hardness and magnesium affect to the tree growth, soil hardness and potassium to the tree growth, potassium and calcium to the rot growth, respectively. Using this research results, we can be use the planting plan including revegetation, construction and maintenance of the reclaimed seaside. In the future, the planting method including the ground preparation and tree species selection for the reclaimed seaside should be accompanied in advanced through the soil survey and relevant analysis.

  • PDF

Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM

  • Liu, Qi;Peng, Kang;Zeng, Jie;Marzouki, Riadh;Majdi, Ali;Jan, Amin;Salameh, Anas A.;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.549-566
    • /
    • 2022
  • Mining of ore minerals (sfalerite, cinnabar, and chalcopyrite) from the old mine has led in significant environmental effects as contamination of soils and plants and acidification of water. Also, nanoparticles (NP) have obtained global importance because of their widespread usage in daily life, unique properties, and rapid development in the field of nanotechnology. Regarding their usage in various fields, it is suggested that soil is the final environmental sink for NPs. Nanoparticles with excessive reactivity and deliverability may be carried out as amendments to enhance soil quality, mitigate soil contaminations, make certain secure land-software of the traditional change substances and enhance soil erosion control. Meanwhile, there's no record on the usage of Nano superior substances for mine soil reclamation. In this study, five soil specimens have been tested at 4 sites inside the region of mine (<100 m) to study zeolites, and iron sulfide nanoparticles. Also, through using Artificial Neural Network (ANN) and Extreme Learning Machine (ELM), this study has tried to appropriately estimate the mechanical properties of soil under the effect of these Nano particles. Considering the RMSE and R2 values, Zeolite Nano materials could enhance the mine soil fine through increasing the clay-silt fractions, increasing the water holding capacity, removing toxins and improving nutrient levels. Also, adding iron sulfide minerals to the soils would possibly exacerbate the soil acidity problems at a mining site.

Effects of Forest Fire on the Forest Vegetation and Soil (I) - The First Year's Results after Fire at Mt. Gwanag - (황폐산지(荒廢山地)에서의 산불이 삼림식생(森林植生) 및 토양(土壤)에 미치는 영향(影響)에 관한 연구(研究)(I) - 관악산(冠岳山) 뱀골계곡(溪谷)에서의 초기영향(初期影響) -)

  • Woo, Bo Myeong;Kwon, Tae Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.62 no.1
    • /
    • pp.43-52
    • /
    • 1983
  • The purpose of this study was to measure the changes in soil properties and forest vegetation after surface fire, which had occured on June 5, 1983 in Mt. Gwanag, Kyunggi-do. Moisture content, organic matter and acidity of soil increased just after the fire and then dropped down up to those of unfired areas as time goes. Also total nitrogen, available phosphorous exchangeable base had the similar trend to moisture, organic matter and acidity. Most of the exchangeable bases in surface soil except for sodium were higher than those in sub-soil. No changes in soil texture by the fire were found. Increasers, decreasers, invaders and neutral species could be classified according to the relative importance value of each species. Species diversity was reduced just after the fire and increased gradually afterward. Diversity in the southeast slope was higher than that in the southwest slope. Due to the fire, evenness of woody plants decreased continuously while that of herbs increased. Species similarity was shown greater at fired areas than at unfired areas.

  • PDF