• Title/Summary/Keyword: Software reliability cost model

Search Result 81, Processing Time 0.027 seconds

A cost-reliability model for the optimal release time of a software system

  • Lee, Won-Hyung;Kim, Yong-Whi
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.405-421
    • /
    • 1991
  • In this paper, faults existing in a software system is classified into three types; simple, degenerative and regenerative faults. The reliability functions and failure rates of both a software module and system which have a mixture of such faults are obtained and the expected number of failures in the system after time T is also derived. Using the formulas obtained, a cost-reliability model and an efficient algorithm for optimal software release time are proposed via nonlinear programming formulation ; minimizing the total test cost with constraints on the failure rates of each module. Application of this model to several cases are presented and it appears to be more realistic.

  • PDF

The Comparative Software Development Cost Model Considering the Change in the Shape Parameter of the Erlang Distribution (어랑분포의 형상모수 변화에 따른 소프트웨어 개발 비용모형에 관한 비교 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.566-572
    • /
    • 2016
  • Software Reliability implemented in software development is one of the most important issues. In finite failure NHPP software reliability models for software failure analysis, the hazard function that means a failure rate may have constant independently for failure time, non-increasing or non-decreasing pattern. In this study, software development cost analysis considering the variable shape parameter of Erlang distribution as the failure life distribution in the software product testing process was studied. The software failure model was applied finite failure Non-Homogeneous Poisson Procedure and the parameters approximation using maximum likelihood estimation was accompanied. Thus, this paper was presented comparative analysis by applying a software failure time data to the software, considering the shape parameter of Erlang distribution for development cost model analysis. When compared to the cost curve in accordance with the shape parameter, the model of smaller shape can be seen that the optimal software release time delay and more cost. Through this study, it is thought that it can serve as a preliminary information which can basically help the software developers to search for development cost according to software shape parameters.

A Study on the Optimum Release Model of a Developed Software with Weibull Testing Efforts (웨이블 시험노력을 이용한 개발 소프트웨어의 최적발행 모델에 관한 연구)

  • Choe, Gyu-Sik;Jang, Yun-Seung
    • The KIPS Transactions:PartD
    • /
    • v.8D no.6
    • /
    • pp.835-842
    • /
    • 2001
  • We propose a software-reliability growth model incoporating the amount of testing effort expended during the software testing phase. The time-dependent behavior of testing effort expenditures is described by a Weibull curve. Assuming that the error detection rate to the amount of testing effort spent during the testing phase is proportional to the current error content, a software-reliability growth model is formulated by a nonhomogeneous Poisson process. Using this model the method of data analysis for software reliability measurement is developed. After defining a software reliability, we discuss the relations between testing time and reliability and between duration following failure fixing and reliability are studied in this paper. The release time making the testing cost to be minimum is determined through studying the cost for each condition. Also, the release time is determined depending on the conditions of the specified reliability. The optimum release time is determined by simultaneously studying optimum release time issue that determines both the cost related time and the specified reliability related time.

  • PDF

A Comparative Study on Software Reliability Model for NHPP Intensity Function Following a Decreasing Pattern (강도함수가 감소패턴을 따르는 NHPP 소프트웨어 신뢰모형에 관한 비교 연구)

  • Kim, Hee Cheul;Kim, Jong Buam;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.4
    • /
    • pp.117-125
    • /
    • 2016
  • Software reliability in the software development process is an important issue. In infinite failure non-homogeneous Poisson process software reliability models, the failure occurrence rates per fault. can be presented constant, monotonic increasing or monotonic decreasing pattern. In this paper, the reliability software cost model considering decreasing intensity function was studied in the software product testing process. The decreasing intensity function that can be widely used in the field of reliability using power law process, log-linear processes and Musal-Okumoto process were studied and the parameter estimation method was used for maximum likelihood estimation. In this paper, from the software model analysis, we was compared by applying a software failure interval failure data considering the decreasing intensity function The decreasing intensity function model is also efficient in terms of reliability in the arena of the conservative model can be used as an alternating model can be established. From this paper, the software developers have to consider life distribution by preceding information of the software to classify failure modes which can be gifted to support.

A Study on Software Reliability Evaluation Using SRGM (SRGM을 이용한 소프트웨어 신뢰도 평가에 관한 연구)

  • 신경애
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.4
    • /
    • pp.553-560
    • /
    • 2003
  • Can presume number of software failure or remaining fault that is expected with test data that is collected by decided time using SRGM that is studied until present. Therefore, can forecast software reliability achievement degree and software reliability use step. But, reliability evaluation according to if choose any model can change. Therefore, we present SRGM that consider test cost to error detection and error delete cost as SRGM that consider error delete cost in this research. Using this SRGM, can presume number of remaining fault in software, reliability and optimal release time.

  • PDF

Optimal Release Policies of Software System with Scheduled Delivery Time (예정된 인도시기를 가진 Software시스템의 최적방출정책)

  • 정영배;신현재
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.9 no.13
    • /
    • pp.29-32
    • /
    • 1986
  • A decision procedure to determine when computer software should be released after testing is described. This paper extends optimum release policies minimizing the total expected software cost with a scheduled software delivery time under reliability requirement constraint. Such cost considerations enable us to make a release decision as to when transfer a software system from testing phase to operational phase. The underlying model is software reliability growth model described by a nonhomogeneous poisson process. It is assumed that the penalty cost function due to delay for a scheduled software delivery time is linearly proportional to time. Numerical examples are shown to illustrate the results.

  • PDF

Cost-Reliability Optimal Policies Based on Musa-Okumoto Logarithmic Poisson Execution Time Model (Musa-Okumoto 대수 포아송 실행시간 모형에 근거한 비용-신뢰성 최적정책)

  • 김대경
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.3
    • /
    • pp.141-149
    • /
    • 1998
  • It is of great practical interest to decide when to stop testing a software system in the development phase and transfer it to the user. This decision problemcalled an optimal software release one is discussed to specify the a, pp.opriate release time. In almost all studies, the software reliability models used are nonphomogenous Poisson process(NHPP) model with bounded mean value function. HNPP models with unbounded mean value function are more suitable in practice because of the possibility of introducing new faults when correcting or modifying the software. We discuss optimal software release policies which minimize a total average software cost under the constraint of satisfying a software reliability requirement. A numerical example illustrates the results.

  • PDF

The Comparative Study of the Warranty Cost Model for Software Reliability Time Based on Extreme Value Distribution (극값 분포 특성을 가진 소프트웨어 신뢰성 보증 모형에 관한 비교연구)

  • Kim, Hee-Cheul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6B
    • /
    • pp.623-629
    • /
    • 2009
  • In this research, the process of developing software products to users in transfer by considering the warranty period to determine the timing of the release period is a comparative study of models. For the results of demonstration, exponential software reliability model increases the warranty period, the higher the initial period, but shows almost a similar release. In contrast, the optimal release time of imperfect debugging software reliability model, lower the initial warranty period, but the pattern is expected to rise slightly larger. The proposed model, extreme value distribution model, pattern of the optimal release time gradually increase, have a form that can be drawn. These research results through, warranty period and release the software developers understand the relationship between the optimal time for software development by using advance information could do is feed.

Cost Implications of Imperfect Repair in Software Reliability

  • Chuiv, Nora-Ni;Philip J. Boland
    • International Journal of Reliability and Applications
    • /
    • v.2 no.3
    • /
    • pp.147-160
    • /
    • 2001
  • The reliability of computer software is of prime importance for all developers of software. The complicated nature of detecting and removing faults from software has led to a plethora of models for reliability growth. One of the most basic of these is the Jelinski Moranda model, where it is assumed that there are N faults in the software, and that in testing, bugs (or faults) are encountered (and removed when defected) according to a stochastic process at a rate which at a given point in time is proportional to the number of bugs remaining in the system. In this research, we consider the possibility that imperfect repair may occur in any attempt to remove a detected bug in the Jelinski Moranda model. We let p represent the probability that a fault which is discovered or detected is actually perfectly repaired. The possibility that the probability p may differ before and after release of the software is also considered. The distribution of both the number of bugs detected and perfectly repaired in a given time period is studied. Cost models for the development and release of software are investigated, and the impact of the parameter p on the optimal release time minimizing expected costs is assessed.

  • PDF

Error Forecasting & Optimal Stopping Rule under Decreasing Failure Rate (감소(減少)하는 고장률(故障率)하에서 오류예측 및 테스트 시간(時間)의 최적화(最適化)에 관한 연구(硏究))

  • Choe, Myeong-Ho;Yun, Deok-Gyun
    • Journal of Korean Society for Quality Management
    • /
    • v.17 no.2
    • /
    • pp.17-26
    • /
    • 1989
  • This paper is concerned with forecasting the existing number of errors in the computer software and optimizing the stopping time of the software test based upon the forecasted number of errors. The most commonly used models have assessed software reliability under the assumption that the software failure late is proportional to the current fault content of the software but invariant to time since software faults are independents of others and equally likely to cause a failure during testing. In practice, it has been observed that in many situations, the failure rate decrease. Hence, this paper proposes a mathematical model to describe testing situations where the failure rate of software limearly decreases proportional to testing time. The least square method is used to estimate parameters of the mathematical model. A cost model to optimize the software testing time is also proposed. In this cost mode two cost factors are considered. The first cost is to test execution cost directly proportional to test time and the second cost is the failure cost incurred after delivery of the software to user. The failure cost is assumed to be proportional to the number of errors remained in the software at the test stopping time. The optimal stopping time is determined to minimize the total cost, which is the sum of test execution cast and the failure cost. A numerical example is solved to illustrate the proposed procedure.

  • PDF