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Abstract. The reliability of computer software is of prime importance
for all developers of software. The complicated nature of detecting and
removing faults from software has led to a plethora of models for reli-
ability growth. One of the most basic of these is the Jelinski Moranda
model, where it is assumed that there are N faults in the software, and
that in testing, bugs (or faults) are encountered (and removed when de-
tected) according to a stochastic process at a rate which at a given point
in time is proportional to the number of bugs remaining in the system.
In this research, we consider the possibility that imperfect repair may
occur in any attempt to remove a detected bug in the Jelinski Moranda
model. We let p represent the probability that a fault which is discov-
ered or detected is actually perfectly repaired. The possibility that the
probability p may differ before and after release of the software is also
considered. The distribution of both the number of bugs detected and
perfectly repaired in a given time period is studied. Cost models for the
development and release of software are investigated, and the impact of
the parameter p on the optimal release time minimizing expected costs
is assessed.

Key Words : Software Testing, Jelinski Moranda Model, Software Re-
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1. INTRODUCTION

The often complicated nature of detecting and removing faults in computer soft-
ware has led to an extensive literature on software reliability modeling. The books
by Lyu (in particular the chapter by Farr(1996)), Singpurwalla and Wilson (1999),
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and Musa, laninno and Okumoto (1987) provide excellent overall references for much
of the recent developments in software reliability modeling, and the survey by Xie
(2000) provides a good recent overview of the subject. One of the earliest and most
basic models in software reliability is however the Jelinski Moranda model which
was introduced in 1972. In this model it assumed that there are N faults in the
software, and that in testing, bugs (or faults) are encountered (and removed when
detected) according to a stochastic process at a rate which at a given point in time
is proportional to the number of bugs remaining in the system. Hence if at a given
point in time r faults have been encountered and removed, then the failure rate for
the software is of the form A(N —r) for some constant A. This is of course equivalent
to assuming that the time T}, ; between the r** and (r + 1) failures is exponen-
tially distributed with parameter (failure rate) A(N —r) for r = 0,1,...,N — L.
Because this model makes the implicit assumptions that all of the bugs remaining
in the software at a given time contribute equally to the failure rate, and that when
bugs are encountered they are perfectly repaired or removed, there have been many
generalizations and extensions of this model. Many of these generalizations assume
that repair of a fault when it is encountered is perfect, although there are some
exceptions. Mazzuchi and Soyer (1988) introduced a model whereby the failure rate
A,41 between the r** and (r 4 1)¢ failures is a random variable which is stochasti-
cally decreasing. This allows the possibility that repair of faults is not perfect and in
particular that the failure rate in practice might actually occasionally increase. Goel
and Okumoto (1978) introduced a generalization whereby the failure rate between
the r** and (r + 1)*t failure is of the form A(N — pr). The model we introduce here
allows for the imperfect repair of faults whereby when a fault is detected and not
correctly fixed, then the failure rate for the occurrence of the next fault does not
change. Let us assume that p is the probability that a failure (bug) which is detected
is perfectly (correctly) repaired, and hence the failure rate for the software between
the detection and perfect repair of the r** and (r+1)%t failures is Ap(IN —r). However,
in between such events there might be discoveries of faults which are subsequently
not perfectly repaired (and hence do not change the failure rate of the software as
a whole). In this paper we study cost structures for this model and discuss optimal
stopping times for release of software. Of particular interest is how the probability
of perfect repair p influences the optimal release time for software.

The concept of perfect and imperfect repair for engineering systems has been
extensively treated in the reliability literature. Brown and Proschan (1983) were
among the first to deal with the possibility that the repair of a system might be
perfect with probability p (and otherwise that an imperfect or minimal repair is
made in the sense that the system repair rate returns to what it was just prior to
failure), and they studied the distribution between renewal states for systems. Some
other useful references for imperfect repair of systems are Finkelstein (1997), Lim
and Park (1999), Makis and Jardine (1992), and Sheu (1998).
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2. THE NUMBERS OF SOFTWARE FAULTS REMOVED R(¢) AND
DETECTED M(t) IN THE INTERVAL (0, ¢

As in the Jelinski-Moranda model, we shall assume that initially there are N
faults in the software each with failure rate A, resulting in an initial failure rate for
the system of AN. When a fault is detected in the software, we assume it is perfectly
repaired with probability p, in which case the number of faults in the software is
reduced by 1 (and consequently the failure rate is reduced by A). Otherwise the
number of bugs in the software (and the failure rate for the software) remains the
same. For any interval of time (0,t], we let M(t) be the total number of faults
detected or met by time ¢, and R(t) be the number of bugs which have been removed
(that is detected and perfectly repaired) by time t. The number of unsuccessful
repairs in the interval (0, t] will be denoted by U(¢) = M (¢) — R(t). In the standard
Jelinski Moranda model the times between removals of faults are independent (but
not identically distributed) exponential random variables, while in our model (due
to the possibility of the detection of a fault which is not removed) the times between
removals of faults are independent compound Geometric random variables. However
times between detections (which are not necessarily removals) of faults are still
independent exponential random variables. For any integers u and r (where 0 <71 <
N) we let

Pr(t) = Prob(R(t) =7) and P,,(t) =Prob(U(t) = u, R(t) =7), (2.1)

We will derive useful expressions for these quantities in terms of ¢ and the relevant
parameters A, N and p. Using a standard differential equations approach, it may
be established that for any 1 <r < N

Pl(t) = —Ap(N = r)E:(t) + Ap(N —r + 1)P,_1 (#).

With the initial conditions that P,(0) = 0 for 1 < r < N and Py(t) = e 2PNt for
t > 0, one may establish (by induction or otherwise) that

P (t) = (J: >e-AP<N—T)t(1 — ety (2.2)

Note that R(t) is a binomial birth process (that is R(t) is Bin{N, 1 —e~*Pt) for any
t > 0), and that when p = 1 (perfect repair) we obtain the standard Jelinski Moranda,
model. We will now derive an expression for P, .(t) using an integral approach. The
following technical results will be useful and can be proved by induction:

Lemma 1 For any non-negative integers r, u and nonnegative o, X

T Zp zo
AT/ / / [a+AzT+AxT"1+"'+Axl]ue‘[a+/\2r+"'/\11]dm dzs...dz
u:
Jr—-1 p

i Z Z Z chz_—_}-_ﬁ\_:f]__ o—latifz] (2.3)

11*012—0 Jr=0 i=0
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Lemma 2 For alln,; >0

n Ny . |
Z (/{Ik-:-_']) _ (n'-f-.] + 1').. (2.4)
= Kl nl(j + 1!

Now let z; < 2o < --- < z, be the occurrence times of the r bugs which
are detected and successfully removed in the time interval (0,¢]. Let ug,us,...,u,
be the number of bugs which are encountered but not removed in the time inter-
vals (0, z1], (z1,22],. .., (zr,t]. For convenience we will furthermore set zo = 0 and

Zr41 = t. Letting x = (zg, 21, 22, ...z,) and u = (ug, u1, ...u,) we have that the joint
density function for x and u is given by

fxu) = ﬁ { AN = 8)(zig1 — 33)]% e~ AN =)(@ig1=2:) (1 _ pyus } ﬁ AN — i)

u;!
i=0 i=0

(e” Z;o A(1\’~-’~‘)(m-’+1—zi)) {ﬁ AN = ) (@41 — z)]™ }

i=0

pr(1 = p)2izo M AT

N!?
(N —r)!

.
Do AT (VY pre- AN - [AN = i)(@ig1 — z3)]“
(1 — i=0 “TAT H(e— AN =tz rt-+z1] +
r-pEiem (e DIES
1=0

On integration it follows that

Z // / f(x,u)dxq dxsy ..

ug+-Up=u

— Ar( )T'p p)u// / —A[N —7)t+x e t1])

{% ) H”‘ ””'“ )]'}dxl...dx,

uo+-+ur=ui=0

Il

P, (t)

Recognizing the multinomial expansion

Z H ul (.$1+1 — T )] - |:Z A(N - i)(Tip1 — mz)]

!
uo+-tur=u i=0 Ui

the expression for P, ,(t) simplifies to

P (t) = (N) (1 - p)*ATr!

/ / /z2 AN -t + Awr AT AN-ntet el g

Using Lemma 1, these iterative integrals are replaced by an iterative sum

Jr—1 1

Pur(t) = "(1-py* Zu: Z DI WIC: (A ’j):!*“ AT A —r)erin

J1=0j2=0 Jrn=0 1=0
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u=j2

u i = AN = r)ebit) [AGY = )t + ALY
p(l—p) Z Z ) (—1)fem A= i Z Z !

I

1i=0 u—j,=0 u—jr.—1=0 u—3j1=0
_ Ny . u - r i - —r41 - [A(N_T+1)t] (T+“_.7“1)
= (C)pra-» Z;(i)(—n oAV +)tzo : R (2.5)
= J:

(repeated applications of Lemma 2 show that

u—Jjr u—7j2 N i
(Np +7r—1 r+u—jp — 1)!
> 2 1= Z 21 r—l'N') :((r—l)!(i—jr)!

u—jr_l_o u— ]1 =0 N,- 1—0

where N; = u— j;). Complicated as it is, equation (2.5) gives us a precise expression
for the probability Prob(U(t) = u, R(t) = r). Note that summing equation (2.5)
over u yields P.(t), confirming the result obtained previously. We have seen that
E[R(t)] = N(1 — e~"?*), and we now derive a similar expression for E[U(t)].

N oo
Z Z uPy r(t)

EU®)] =
r=0 u=0
N r 0 u )
Ny - r i,— —r+i r+u—7— 1) [AN—r+i)tp N
= 2 (2 Qe ((T—l)!(t]t—]'))![( 5! T -n)
r=0 i=0 u=0 j=0
N N r
= Z (r )pr Z (Z)(_l)i+1e—A(N—-r+i)t
=0 =0
8 © AN —r+i)t)d = (r+u—j—1) i
4% {Z D T R T }
i=0 u—j=0
N r
Ny . r i _ a0 B i
= (l—p)g(r)p ;0(1)(_1) +le A(N +)ta_p{eA(1 PN +)tp }
N r
= (I—P)Z (]:)prz (Z)(_l)ie—A(N—r+i)t{A(N_,'.+i)t+Tp—1}eA(1—p)(N—r+i)tp—r
r=0 i=0
N N .
S S LD W (L es

4
o

2|l

=0

(I:_I)e-Ap(N—r)t{[A(N—-r)t_{_ %] i( )( 1)ie=Arti +At2 ( 1)ie=Aptiy

r=0 i=

N
= (1-p) Z (]:,)e_Ap(N_’)t{ [A(N ~rit+ %] (1- e‘Apt)T - Arte_Apt(l — e‘Apt)T_l}

r=0

]

= (1-p)

= (1-p){ANte= 7t 4 lN(1 — e APty _ ANte AP}
p
= %N(l — e Arty, (2.6)

Our expression for E[U(t)] may also be established by induction on N and con-
ditioning on the time X; until the first bug is detected and perfectly repaired.
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Although there does not seem to be an easy verification of (2.6), the result has a
certain rationale to it. The number of bugs encountered and not successfully re-
paired between each successful repair is Geometric with parameter p (and mean
(1 —p)/p) and E[R(t)] = N(1 — e~*?!). U(t) may be expressed as a sum of R(t)
geometric random variables with parameter p plus a remainder term (# unsuccessful
repairs in the interval (zg(),t]). Given that M(t) = R(t) + U(t), it is clear that
B[M(8)] = (N/p)(1 — e~?").

3. OPTIMAL RELEASE TIME FOR TESTING SOFTWARE

Considerable development and testing is usually involved before a piece of soft-
ware is made commercially available. What is the optimal release time T* for a piece
of software? This is of course a crucial question of considerable (financial and oth-
erwise) consequence. Often software is introduced knowing that it possesses some
(many?) errors of a minor nature, but hopefully without any which are fundamental
to the functioning of the system. Competition often necessitates that software is re-
leased quicker than it might otherwise be. The problem of determining the optimal
release time for software is an important one that has been extensively treated in the
literature. Okumoto and Goel (1980) introduce a basic cost model and determine the
optimal release time for their time dependent error detection model. An interesting
generalization of this model was studied by Wang and Pham (1996) in which they
extend the cost model to incorporate costs for warranty periods, error removals and
risk costs. Singpurwalla (1991) addresses finding an optimal release time using the
Jelinski Moranda model with a Bayesian decision theoretic approach. Boland and
Singh (2000b) determine optimal release times for the Moranda geometric model for
software failures (see also Moranda (1975)). Other approaches to determining the
optimal release time which are of a decision theoretic nature are treated in McDaid
(1998) and Dalal and Mallows (1988). We consider two cost structure models for
the release of software at time T for our imperfect repair model, and determine the
time T™ which minimizes expected costs. An important part of our considerations
is to evaluate the impact of the parameter p (which represents the probability of
perfect software repair) on the optimal release time T*.

In our cost models we will consider two distinct cases. In the first case we
consider a fixed software life-cycle time ty where it is desired that if the software
is released at time T, it functions well in the period (T, %]. In the second case we
will want the software to function for some fixed mission time 7 after release (that
is to say, in the period (T,T + 7]). Let us use ¢; to be the cost associated with
encountering a bug (whether successfully repaired or not) during the testing period
(0,T], co to be the cost of dealing with a bug encountered after the release time T,
and c3 to be the cost of testing per unit time during the testing period. A common
cost function model used for releasing the software at time T (see Okumoto and
Goel (1980), McDaid (1998), and Boland and Singh (2000b)) takes the form

C(T) = s M(T) + ¢o[M(9(T)) — M(T)} + 3T (3.1)
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where g(T') = g1(T') = tp in case 1 where we are considering a fixed life cycle time
to, and g(T') = go(T) = T + 7 in case 2 when we consider a fixed mission time 7.
The total expected cost for releasing the software at time 7" therefore takes the form

E[C(T)] = aBE[M(T)]+ c2(E[M(¢(T))] - E[M(T)]) + csT
= CQ%(]. — e AP9(T)y _ (¢ - cl)%(l —e My LT (3.2)

Differentiating with respect to 7', we find unique critical points;

1 AN(CQ - Cl)]
T = —In|———— :
oo [ il (3.3)
for case 1, while in case 2 the solution is
1 — e~ ApTy _
T = —In {AN(Cz(l ") C‘)J . (3.4)
Ap c3

These give a minimum if AN[cz —c1] > c3 in case 1, and AN[ca(1—e ™ ?PT) ~¢1] > ¢3
in case 2. Otherwise Z=E[C(T)] > 0, and T should be taken as zero. Furthermore
we must have T < g(T'), thus, denoting the optimal choice of T' by T™*,

T* = min (to, maz (0, Aip In [%])) (3.5)

in the case of the fixed life cycle ¢y, and for the case of a fixed mission time T,

— e—ApTy _
T = maz <O, -—1—-ln [AN[C2(1 © ) cﬂ]) .
Ap c3

Up to this point we have assumed that N, the number of bugs originally in
the system, is fixed. We now consider the situation where N is itself a random
variable. Some common distributions used to model N are: N ~ Poisson(6),
N ~ NegBin(x,8) and N ~ Bin(M,6). In order to minimize the expected cost
of releasing the software, we need expressions for E[R(t)],the expected number of
bugs encountered and removed in (0,¢] and E[U(¢)], the expected number of bugs
encountered, but not removed in (0,¢]. Conditioning on N and using our previous
results, it follows that

E[R(t)] = En[E[R(t|N)]] = E[N](1 - e~ ")

(3.6)

and
BV (®)] = En[EWUN)] = BIVI[F—L(1 - e,

Consequently we obtain E[M(t)] = E[N]Il,(l —e~AP) and thus as with the derivation
of (3.2)

E[N]

E[C(T)] = c?E—[]ﬂ(l — e M9y _ (¢y — ¢1) (1 — e AT 4 3T (3.7)
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Proceeding as in the case where N is known, one‘may establish formulae for the
optimal T identical to those derived in (3.5) and (3.6) with N replaced with E[N].

4. NUMBER OF FAULTS REMAINING AT TIME T

Of considerable concern is the number of faults or bugs N — R(T') remaining
in the system at any time and in particular at release time 7. In the situation
where N is known, we have seen that R(T) ~ Bin(N,1 — e~*P!) and consequently
that N — R(T) ~ Bin(N,e~Pt). More generally suppose that N is random with
distribution w. Therefore

o0
P(N-R(T)=j) = Y P(N-R(T)=j|N=n)r(n)

n=j

= Y P j(T)n(n)
n=j

= i (”) e MTI(1 — = APT ) =ip(p). (4.1)

n=j J

The distribution of N — R(T') often takes the same form as that of N, as Table 1
demonstrates:

5. DIFFERENT PROBABILITIES OF REMOVING BUGS

In some situations it might be reasonable to assume that the probability of a
perfect repair p changes after the software is released at time T'. Let us therefore
assume that p; is the probability that a bug encountered during the testing period
(0,T] is removed (perfectly repaired) and that py is the corresponding probability
for a bug encountered after release at time 7. Using the same cost model for testing
the software and by conditioning on the number of bugs N — R(T’) left in the system
at time T', one may show that

—/\plT
Ne (1= e 800M=TH LT (5.1)

N
EC(T) =a—1-e ™) +o
bh
In the case of a fixed life-cycle time tg we find the optimal (minimizing expected
costs) release time by solving the equation

(e1AN — c2AN%) e AT 4 C2AN£1_5—£2 e~ M2tog=AP1-P)T 4 oo = (5.2)
2 2

Since this equation cannot be solved in closed form, the value of T* must be found
numerically. Moreover in this case it is not immediately obvious whether there is a
unique solution to (5.2).
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In the case of a fixed mission time 7, one is able to solve explicitly the equation
E'(C(T)) = 0, therefore obtaining the optimal release time to be

L [AN(%’%(l —e~"2) —CI)D_ (5.3)

, 1
Ap,

T* = max (0
c3

6. NUMERICAL EXAMPLES

We now illustrate our results with some numerical examples, using as data the
failure data set DS1 discussed by Goel (1980). This data gives rise to estimates of
N = 1348 and A = 0.124 for the parameters in the Jelinski Moranda model. We
also use the same cost parameters of ¢; = 1, ¢2 = 5, c3 = 100 suggested by Okumoto
and Goel (1980) (and used by Boland and Singh (2000a) and (2000b) ) in order to
make comparisons with other studies.

Table 2 gives the optimal testing time T™ for different values of p (the probability
of perfect fault repair), for the cases where the fixed life cycle time is t; = 100 and
for the situation when we are interested in the software functioning well during a
mission time of 7 = 2,5, 10, 20,50, 100. Figure 1 illustrates the behavior of T* as a
function of p plotted for a number of values of 7. Table 2 illustrates the general result
(which is clear from equation (3.5) ) that for a fixed life cycle time, the optimal T
is a decreasing function of p. In other words, as the probability of a perfect repair
increases, the less one needs to test the software. Note however that for a mission
time of 7, the optimal time T™ is not necessarily a decreasing function of p, however
for a fixed value of p it is (in general ) an increasing function of 7. Table 3 gives the
corresponding minimum expected costs for these optimal release times. Note that
these minimal costs decrease with p and increase with 7, results which support one’s
intuition.

Next we consider the situation where the probability of perfect repair before (p;)
and after (ps) release of the software may vary. As in the previous examples, we
have taken ¢; = 1,¢2 = §,¢3 = 100,V = 1348 and A = 0.124. Table 4 gives the
optimal T* when the life-cycle time ¢y = 100, and Table 5 gives the corresponding
minimal expected costs. Note that for fixed po, T* is not necessarily (as might be
expected) a decreasing function of p;. Table 4 does however suggest that for fixed
p1, T* is a decreasing function of po.

Tables 6 and 7 are the optimal T and minimal expected costs for the situation
where one is interested in a fixed mission time 7 = 100. As Table 6 suggests, it can
be shown that in general 7™ is a decreasing function of ps.

REFERENCES

Boland, P.J. and Singh, H. (2000a). A Birth Process approach to Morand’s Ge-
ometric software Reliability Model, under revision for IEEE Transactions in
Reliability.



156 Cost Implications of Imperfect Repair in Software Reliability

Boland, P.J. and Singh, H. (2000b). Determining the Optimal Release Time for
Software in the Geometric Poisson Reliability Model, submitted for publica-
tion.

Brown M. and Proschan, F. (1983). Imperfect Repair. Journal of Applied Proba-
bility, 20, 851-862.

Dalal, S. R. and Mallows, C. L. (1988). When to stop testing software. Journal of
American Statistical Association, 83, 872-879.

Farr, W. (1996). Software Reliability Modeling Survey, Chapter 3 in Handbook of
Software Reliability Engineering, edited by M. R. Lyu, McGraw Hill.

Finkelstein M.S.(1997). Imperfect repair models for systems subject to shocks.
Applied Stochastic Models and Data Analysis, 13, 385-390.

Goel, A.L. (1980). Software Error Detection model with applications. The Journal
of Systems and Software, 1, 243-249.

Goel, A.L. and Okumoto, K. (1978). An Analysis of Recurrent Software Failures
on a Real-Time Control System. In Proceedings of the ACM Annual Technical
Conference, 496-500.

Jelinski, Z. and Moranda, P. (1972). Software Reliability Research. Statistical
Computer Performance Evaluation, Ed. W. Freiberger, 465-84, New York,
Academic.

Lyu, M. R. (1996). Handbook of Software Reliability Engineering, McGraw Hill.

Lim J.H. and Park D.H. (1999). Evaluation of average maintenance cost for
imperfect-repair model. IEEE Transactions in Reliability, 48(2), 199-204.

Makis, V. and Jardine, A.K.S. (1992). Optimal Replacement for a general-model
with Imperfect Repair. Journal of the Operational Research Society, 43(2),
111-120.

Mazzuchi, T.A. and Soyer, R. (1988). A Bayes Empirical Bayes for Software Reli-
ability. IEEE Transactions in Reliability, 37, 248-254.

McDaid, K. (1998). Deciding How Long to Test Software. Unpublished thesis,
Department of Statistics, Trinity College Dublin.

Moranda, P.B. (1975). Prediction of Software Reliability Software During Debug-
ging. Proceedings on the 1975 Annual Reliability and Maintainability Sympo-
stum, 327-32.

Musa, J. D., Iannino, A. and Okumoto, K. (1987). Software Reliability: Measure-
ment, Prediction, Application, New York Wiley.



Philip J. Boland and Néra Ni Chuiv 157

Okumoto, K. and Goel, A.L. (1980). Optimal Release Time for Software Systems
Based on Reliability and Cost Criteria. The Journal of Systems and Software,
1, 315-318.

Sheu S.H. (1998). A generalized age and block replacement of a system subject to
shocks. European Journal of Operational Research, 108, 345-362.

Singpurwalla, N. D. and Wilson, S. P. (1999). Statistical Methods in Software
Engineering: Reliability and Risk. Springer.

Singpurwalla, N. D. (1991). Determining an optimal time interval for testing and
debugging software. IEEE Transactions on Software Engineering, 17, 313-319.

Wang H.Z. and Pham H. (1996). Optimal maintenance policies for several imperfect
repair models. International Journal of Systems Science, 27(6), 543-549.

Xie, M. (2000) Software Reliability Models - Past, Present and Future. in Recent
Advances in Reliability Theory - Methodology, Practive and Inference. Eds
Limnios, N and Nikulin M., Birkhauser, 325-340.

BIOGRAPHY OF AUTHOR

Philip J. Boland is the Professor of Statistics at the National University of Ireland
- Dublin (UCD). He served as Head of the Department of Statistics at UCD (Univer-
sity College Dublin) for the period 1986-2001. Dr. Boland has a B.A. degree from
LeMoyne College (New York), a Ph.D. degree from the University of Rochester (New
York), and a D.Sc. from the National University of Ireland. He is the founder and
Director of the UCD Actuarial and Financial Studies degree programme at UCD.
Professor Boland is an elected member of the International Statistical Institute, and
a member of the Statistical and Social Inquiry Society of Ireland, the American
Statistical Society, the Society of Actuaries in Ireland, the Irish Statistical Associ-
ation and the Irish Mathematical Society. In 1996, he was the first person to be
elected as an Honorary Member of the Society of Actuaries in Ireland, and in 2000
became the first Honorary Fellow of the Society. In 1997/1998 he was elected as the
first President of the Irish Statistical Association. Over the past 20 years the main
area of research of Dr. Boland has been in reliability theory, but he also has inter-
ests in statistical education, actuarial statistics, stochastic processes, the history of
statistics, mathematical statistics and random numbers. He has published over 80
papers in a wide variety of journals and conference proceedings, and presently acts
as an Associate Editor for ”Statistics and Probability Letters” and ”Lifetime Data
Analysis”.



158 Cost Implications of Imperfect Repair in Software Reliability

Table 1. Distribution of Number of Remaining Faults at Time T

[ Distribution 7 for N | Distribution for N — R(T) |

Poisson (6) Poisson (fe="PT)
NegBin (x, 6) NegBin (k,1/(1 + 1_;Qe—ApT))
Bin (M, 6) Bin (M, 0e*PT)

Table 2. Optimal Testing Time, T*

T=107=20 ] r=50 |+ =100

p[to=100 | 7=2]|7=5
0.2 76.61 0 0 0| 1887 | 5851 | 72.16
0.4 38.31 0 0| 943 | 2575 ]| 36.08| 38.13
0.6 25.54 0 0| 1342 | 21.08] 2512 | 25.53
0.8 19.15 0| 472| 1288 17.25| 19.06 | 19.15
1.0 15.32 0] 632| 11.70 | 1443 | 1530 15.32

Table 3. Minimum Expected Cost

plto=100 | 7=2|7=5|7=10{7=20{7=>50|7=100
0.2 15612 | 1631 | 3930 7402 | 12659 16623 17988

0.4 9099 || 1591 | 3701 6329 7961 8994 9199
0.6 6138 | 1553 | 3490 4933 5699 6103 6144
0.8 4608 [ 1516 | 3165 3981 4418 4600 4608
1.0 3687 || 1480 | 2787 3325 3598 3685 3687

Table 4. Optimal Testing Time T* for a given life-cycle time ¢, = 100
when p varies

P11 | P2 = 0.2 P2 = 0.4 P2 = 0.6 P2 = 0.8 P2 = 1.0
0.2 76.61 40.42 4.53 0 0
0.4 51.02 38.31 27.51 18.54 10.36
0.6 40.01 31.89 25.54 20.50 16.22
0.8 33.21 27.18 22.66 19.15 16.25
1.0 28.54 23.72 20.20 17.52 15.32




Table 5. Minimum Expected Cost (for ¢y = 100) when p varies

Philip J. Boland and Néra Ni Chuiv

prlp2=02p2=04|p2=06|p=08|p2=1.0
0.2 15612 14170 11201 8425 6740
0.4 10090 9099 8117 7238 6422
0.6 7463 6744 6138 5640 5213
0.8 5955 5395 4956 4608 4318
1.0 4975 4518 4173 3906 3687

Table 6. Optimal Testing Time T™* for a fixed mission time 7 = 100

when p varies

P11 P2 = 0.2 D2 = 0.4 P2 = 0.6 P2 = 0.8 P2 = 1.0
0.2 72.16 36.59 4.31 0 0
0.4 52.69 38.13 27.42 18.53 10.36
0.6 41.11 31.95 25.53 20.50 16.22
0.8 33.93 27.25 22.66 19.15 16.25
1.0 29.04 23.78 20.21 17.52 15.32

Table 7. Minimum Expected Cost (for 7 = 100) when p varies

P | P2 = 0.2 P2 = 0.4 P2 = 0.6 D2 = 0.8 P2 = 1.0
0.2 17988 14431 11203 8425 6740
0.4 10655 9199 8128 7239 6422
0.6 7702 6786 6144 9641 9213
0.8 6086 5418 4959 4608 4318
1.0 5058 4532 4175 3906 3687
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Figure 1. Optimal Time, 7%, for Various Values of 7



