• 제목/요약/키워드: Software as Medical Device

Search Result 84, Processing Time 0.021 seconds

Development of Respiratory Motion Reduction Device System (RMRDs) for Radiotherapy in Moving Tumor: Construction of RMRDs and Patient Setup Verification Program

  • Lee, Suk;Chu, Sung-Sil;Lee, Sei-Byung;Jino Bak;Cho, Kwang-Hwan;Kwon, Soo-Il;Jinsil Seong;Lee, Chang-Geol;Suh, Chang-Ok
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.86-89
    • /
    • 2002
  • The purpose is to develop a system to reduce the organ movement from the respiration during the 3DCRT or IMRT. This research reports the experience of utilizing personally developed system for mobile tumors. The patients clinical database was structured for 10 mobile tumors and patient setup error measurement and immobilization device effects were investigated. The RMRD system is composed of the respiratory motion reduction device utilized in prone position and abdominal strip device(ASD) utilized in the supine position, and the analysis program, which enables the analysis on patients setup reproducibility. Dose to normal tissue between patients with RMRDs and without RMRDs was analyzed by comparing the normal tissue volume, field margins and dose volume histogram(DVH) using fluoroscopy and CT images. And, reproducibility of patients setup verify by utilization of digital images. When patients breathed freely, average movement of diaphragm was 1.2 cm in prone position in contrast to 1.6 cm in supine position. In prone position, difference in diaphragm movement with and without RMRDs was 0.5 cm and 1.2 cm, respectively, showing that PTV margins could be reduced to as much as 0.7 cm. With RMRDs, volume of the irradiated normal tissue (lung, liver) reduced up to 20 % in DVH analysis. Also by obtaining the digital image, reproducibility of patients setup verify by visualization using the real-time image acquisition, leading to practical utilization of our software. Internal organ motion due to breathing can be reduced using RMRDs, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue.

  • PDF

Current Status, Development Trends and Implications of Digital Therapeutics (DTx) (디지털 치료기기의 현황 및 개발 동향과 시사점)

  • S.H. Lee;M.H. Bae
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.4
    • /
    • pp.73-81
    • /
    • 2024
  • As the demand for a healthy life increases and the use of information technology expands, interest in digital healthcare has increased. Among the digital healthcare technologies, digital therapeutics (DTx), which are capable of disease prevention, management, and treatment rather than simple healthcare, are expected to play a key role in future healthcare services. As interest in untact remote treatment that can minimize the risk of viral infection has rapidly increased since the spread of COVID-19, the application of DTx has received much attention because it can partially replace face-to-face treatment for mental illnesses, chronic diseases, and other diseases, reducing concerns about infection. In addition, because of the nature of software, DTx have lower toxicity and fewer side effects than existing treatments and do not require manufacturing, transportation, and storage like general medicines. Hence, they can be supplied in large quantities at low cost and have the advantage of lowering medical costs. However, despite these advantages, it has been pointed out that there are difficulties in investment and universal use because of the complexity of pricing and malpractice compensation. In other words, if it is difficult to prove and measure the improvements in disease management and treatment using DTx and it takes a considerable amount of time and money to do so, it will be difficult to attract investment from stakeholders such as medical providers and pharmaceutical companies. In this paper, we examine the domestic and global application status and development trends of DTx and determine the relevant implications.

Mobile Healthcare System Based on Bluetooth Medical Device

  • Kim, Jeong-Heon;Lee, Seung-Chul;Lee, Boon-Giin;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.241-248
    • /
    • 2012
  • Recently healthcare industry such as pharmaceutical, medical device and healthcare service technology is growing significantly. Mobile healthcare has attracted big attention due to IT convergence technology. Paradigm of healthcare has been changed from the 1st generation(communicable disease prevention) and the 2nd generation(treatment of disease due to extended life expectancy) to the 3rd generation(extended life expectancy due to prevention and control). In our study, we suggest the 3rd generation mobile healthcare system using Bluetooth based wearable ECG monitoring system and smart phone technology. The mobile healthcare system consists of wearable shirts with Bluetooth communication module, ECG sensor, battery, and mobile phone. The ECG data is obtained by a miniaturized sensor and the data is transferred to a mobile phone using Bluetooth communication. Then, user can monitor his/her own ECG signal on an application using Android in mobile phone. The Bluetooth communication device is used due to highly reliable data transmission property and the Bluetooth chip is embedded in every mobile phone. The wearable shirts with chest belt of Bluetooth ECG module is designed with a focus on convenience in the daily life of a wearer. The ECG signal evaluation software in Android based mobile phone is developed for the health check and the ECG signal variation is tested according to the activities of the wearer such as walking, climbing stairs, stand up and sit down, and so on.

A Study on the Decision Factors for AI-based SaMD Adoption Using Delphi Surveys and AHP Analysis (델파이 조사와 AHP 분석을 활용한 인공지능 기반 SaMD 도입 의사결정 요인에 관한 연구)

  • Byung-Oh Woo;Jay In Oh
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.111-129
    • /
    • 2023
  • With the diffusion of digital innovation, the adoption of innovative medical technologies based on artificial intelligence is increasing in the medical field. This is driving the launch and adoption of AI-based SaMD(Software as a Medical Device), but there is a lack of research on the factors that influence the adoption of SaMD by medical institutions. The purpose of this study is to identify key factors that influence medical institutions' decisions to adopt AI-based SaMDs, and to analyze the weights and priorities of these factors. For this purpose, we conducted Delphi surveys based on the results of literature studies on technology acceptance models in healthcare industry, medical AI and SaMD, and developed a research model by combining HOTE(Human, Organization, Technology and Environment) framework and HABIO(Holistic Approach {Business, Information, Organizational}) framework. Based on the research model with 5 main criteria and 22 sub-criteria, we conducted an AHP(Analytical Hierarchy Process) analysis among the experts from domestic medical institutions and SaMD providers to empirically analyze SaMD adoption factors. The results of this study showed that the priority of the main criteria for determining the adoption of AI-based SaMD was in the order of technical factors, economic factors, human factors, organizational factors, and environmental factors. The priority of sub-criteria was in the order of reliability, cost reduction, medical staff's acceptance, safety, top management's support, security, and licensing & regulatory levels. Specifically, technical factors such as reliability, safety, and security were found to be the most important factors for SaMD adoption. In addition, the comparisons and analyses of the weights and priorities of each group showed that the weights and priorities of SaMD adoption factors varied by type of institution, type of medical institution, and type of job in the medical institution.

Development of Authentication Service Model Based Context-Awareness for Accessing Patient's Medical Information (환자 의료정보 접근을 위한 상황인식 기반의 인증서비스 모델 개발)

  • Ham, Gyu-Sung;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.99-107
    • /
    • 2021
  • With the recent establishment of a ubiquitous-based medical and healthcare environment, the medical information system for obtaining situation information from various sensors is increasing. In the medical information system environment based on context-awareness, the patient situation can be determined as normal or emergency using situational information. In addition, medical staff can easily access patient information after simple user authentication using ID and Password through applications on smart devices. However, these services of authentication and patient information access are staff-oriented systems and do not fully consider the ubiquitous-based healthcare information system environment. In this paper, we present a authentication service model based context-awareness system for providing situational information-driven authentication services to users who access medical information, and implemented proposed system. The authentication service model based context-awareness system is a service that recognizes patient situations through sensors and the authentication and authorization of medical staff proceed differently according to patient situations. It was implemented using wearables, biometric data measurement modules, camera sensors, etc. to configure various situational information measurement environments. If the patient situation was emergency situation, the medical information server sent an emergency message to the smart device of the medical staff, and the medical staff that received the emergency message tried to authenticate using the application of the smart device to access the patient information. Once all authentication was completed, medical staff will be given access to high-level medical information and can even checked patient medical information that could not be seen under normal situation. The authentication service model based context-awareness system not only fully considered the ubiquitous medical information system environment, but also enhanced patient-centered systematic security and access transparency.

3D Simulation of Dental Implant Surgery Using Surgical Guide Stents (식립 보조도구를 이용한 3D 치아 임플란트 시술 시뮬레이션)

  • Park, Hyung-Wook;Kim, Myong-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.216-226
    • /
    • 2011
  • Surgeon dentists usually rely on their experiential judgments from patients' oral plaster casts and medical images to determine the positional and directional information of implant fixtures and to perform drilling tasks during dental implant surgical operations. This approach, however, may cause some errors and deteriorate the quality of dental implants. Computer-aided methods have been introduced as supportive tools to alleviate the shortcomings of the conventional approach. In this paper, we present an approach of 3D dental implant simulation which can provide the realistic and immersive experience of dental implant information. The dental implant information is primarily composed of several kinds of 3D mesh models obtained as follows. Firstly, we construct 3D mesh models of jawbones, teeth and nerve curves from the patient's dental images using software $Mimics^{TM}$. Secondly, we construct 3D mesh models of gingival regions from the patient's oral impression using a reverse engineering technique. Thirdly, we select suitable types of implant fixtures from fixture database and determine the positions and directions of the fixtures by using the 3D mesh models and the dental images with software $Simplant^{TM}$. Fourthly, from the geometric and/or directional information of the jawbones, the gingival regions, the teeth and the fixtures, we construct the 3D models of surgical guide stents which are crucial to perform the drilling operations with ease and accuracy. In the application phase, the dental implant information is combined with the tangible interface device to accomplish 3D dental implant simulation. The user can see and touch the 3D models related with dental implant surgery. Furthermore, the user can experience drilling paths to make holes where fixtures are implanted. A preliminary user study shows that the presented approach can be used to provide dental students with good educational contents. With future work, we expect that it can be utilized for clinical studies of dental implant surgery.

The effect of applying a head-weight device on cervical angle and pain of neck muscles

  • Kim, Jin-Hong;Kim, Jong-Gun;Do, Kwang-Sun;Yim, Jongeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.2
    • /
    • pp.101-105
    • /
    • 2016
  • Objective: The purpose of this study was to measure the change in pain threshold of levator scapular muscle, carniovertebral angle, and head position angle when applying a head-weight device on healthy adult. Design: Cross-sectional study. Methods: This study was conducted with 21 healthy adult male and female who voluntarily agreed to participate in this study after being informed of the purpose and method of this study. After measuring the cervical angle and pain threshold of levator scapular muscle, subject was instructed to walk for 5 minutes on a treadmill at a speed of less than 5 km/h while wearing after wearing head-weight device of 0.5 kg. Then, cervical spine angle and pain threshold of levator scapula muscle were re-measured. Measurement of cervical spine angle was conducted with photo by using the Bluebeam Revu software and the pain pressure thresholds (PPTs) were measured using an electronic algometer over potential trigger points on the body. Results: The results cervical angle showed a significant change, from $49.62^{\circ}$ to $52.10^{\circ}$ (p<0.05). PPT showed a significant change, from 30.71 to 36.89 (p<0.05). Conclusions: These findings suggest that applying head-weight device has a positive influence on increasing cervical angle and reducing pain when applied as a therapeutic intervention method of forward head posture.

Dental Surgery Simulation Using Haptic Feedback Device (햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션)

  • Yoon Sang Yeun;Sung Su Kyung;Shin Byeong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.275-284
    • /
    • 2023
  • Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.

Optimize KNN Algorithm for Cerebrospinal Fluid Cell Diseases

  • Soobia Saeed;Afnizanfaizal Abdullah;NZ Jhanjhi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Medical imaginings assume a important part in the analysis of tumors and cerebrospinal fluid (CSF) leak. Magnetic resonance imaging (MRI) is an image segmentation technology, which shows an angular sectional perspective of the body which provides convenience to medical specialists to examine the patients. The images generated by MRI are detailed, which enable medical specialists to identify affected areas to help them diagnose disease. MRI imaging is usually a basic part of diagnostic and treatment. In this research, we propose new techniques using the 4D-MRI image segmentation process to detect the brain tumor in the skull. We identify the issues related to the quality of cerebrum disease images or CSF leakage (discover fluid inside the brain). The aim of this research is to construct a framework that can identify cancer-damaged areas to be isolated from non-tumor. We use 4D image light field segmentation, which is followed by MATLAB modeling techniques, and measure the size of brain-damaged cells deep inside CSF. Data is usually collected from the support vector machine (SVM) tool using MATLAB's included K-Nearest Neighbor (KNN) algorithm. We propose a 4D light field tool (LFT) modulation method that can be used for the light editing field application. Depending on the input of the user, an objective evaluation of each ray is evaluated using the KNN to maintain the 4D frequency (redundancy). These light fields' approaches can help increase the efficiency of device segmentation and light field composite pipeline editing, as they minimize boundary artefacts.

Magnetic and Thermal Evaluation of a Magnetic Tunneling Junction Current Sensor Package

  • Rhod, Eduardo;Peter, Celso;Hasenkamp, Willyan;Grion, Agner
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.49-55
    • /
    • 2016
  • Nowadays there are magnetic sensors in a wide variety of equipment such as computers, cars, airplanes, medical and industrial instruments. In many of these applications the magnetic sensors offer safe and non-invasive means of detection and are more reliable than other technologies. The electric current in a conductor generates a magnetic field detected by this type of sensor. This work aims to define a package dedicated to an electrical current sensor using a MTJ (Magnetic Tunnel Junction) as a sensing device. Four different proposals of packaging, three variations of the chip on board (CoB) package type and one variation of the thin small outline package (TSOP) were analyzed by COMSOL modeling software by simulating a brad range of current injection. The results obtained from the thermal and magnetic analysis has proven to be very important for package improvements, specially for heat dissipation performance.