• Title/Summary/Keyword: Software Validation Test

Search Result 127, Processing Time 0.029 seconds

Model-Based Development and Test Method for The AUTOSAR Embedded Software (AUTOSAR 임베디드 소프트웨어의 모델기반 개발 및 테스트 방법 - 사례연구 : 운전자 위치제어 시스템)

  • Park, Gwangmin;Kum, Daehyun;Lee, Seonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.4
    • /
    • pp.164-173
    • /
    • 2009
  • Automotive systems have tended to be equipped with many electronic contents to satisfy safety, comport, convenience, and entertainment services over the past years. As a result, the amount of vehicle embedded software in electrical/electronic(E/E) systems is steadily increasing to manage these requirements. This leads to the traditional, document-based software development in the vehicle embedded systems being increasingly displaced by a model-based development in order to reduce software development time and cost. Due to the application of model-based development, a great evolution is being realized in the aspect of efficiency, but the development is being made without sufficient testing. So, erroneous automotive embedded software may cause serious problems such as car accidents which relate to human safety. Therefore, efficient methods for model-based test and validation are needed to improve software reliability in the stage of embedded software development. This paper presents the model-based development and test method for AUTOSAR embedded software to improve its reliability and safety, and it is demonstrated based on the case study.

  • PDF

A Study on Validation Testing for Input Files of MS Word-Processor (MS 워드프로세서의 입력 파일에 대한 유효성 테스팅 방법에 관한 연구)

  • Yun, Young-Min;Choi, Jong-Cheon;Yoo, Hae-Young;Cho, Seong-Je
    • The KIPS Transactions:PartC
    • /
    • v.14C no.4
    • /
    • pp.313-320
    • /
    • 2007
  • In this paper, we propose a method to analyze security vulnerabilities of MS word-processor by checking the validation of its input files. That is, this study is to detect some vulnerabilities in the input file of the word processor by analyzing the header information of its input file. This validation test can not be conducted by the existing software fault injection tools including Holodeck and CANVAS. The proposed method can be also applied to identify the input file vulnerabilities of Hangul and Microsoft Excel which handle a data file with a header as an input. Moreover, our method can provide a means for assessing the fault tolerance and trustworthiness of the target software.

Development Process of FPGA-based Departure from Nucleate Boiling Ratio Algorithm Using Systems Engineering Approach

  • Hwang, In Sok;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • This paper describes the systems engineering development process for the Departure from Nucleate Boiling Ratio (DNBR) algorithm using FPGA. Current Core Protection Calculator System (CPCS) requirement and DNBR logic are analyzed in the reverse engineering phase and the new FPGA based DNBR algorithm is designed in the re-engineering phase. FPGA based DNBR algorithm is developed by VHSIC Hardware Description Language (VHDL) in the implementation phase and VHDL DNBR software is verified in the software Verification & Validation phase. Test cases are developed to perform the software module test for VHDL software modules. The APR 1400 simulator is used to collect the inputs data in 100%, 75%, and 50% reactor power condition. Test input signals are injected to the software modules following test case tables and output signals are compared with the expected test value. Minimum DNBR value from developed DNBR algorithm is validated by KEPCO E&C CPCS development facility. This paper summarizes the process to develop the FPGA-based DNBR calculation algorithm using systems engineering approach.

A study on hypothetical switching software through of the analysis of failure data (고장 데이터 분석을 통한 교환 소프트웨어 특성 연구)

  • 이재기;신상권;이영목
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1915-1925
    • /
    • 1998
  • The switching system software is large scale, real-time multi-task system which requires high reliability. The reliability assessment of large-scale software is very important for the success of software development project. For this raeson, the software quality measurement is much more important. In this paper, we have learned about the software reliability, metho of the analysis of failure data and estimation of software quality. To estimate the software reliability, using the failure data found during of the system test. We apply the two software reliability growth models, named Goel-Okumoto(G-O) and S-shaped model, to estimate the software reliability. Also, we compared with the results and we reviewed fully not only development cycle but validation and verification of the test data, for each software versions. This paper presents a software reliability model that suitale the software development project and the activeity of quality control for the switching system.

  • PDF

Quantitative Reliability Assessment for Safety Critical System Software

  • Chung, Dae-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.386-390
    • /
    • 2007
  • At recent times, an essential issue in the replacement of the old analogue I&C to computer-based digital systems in nuclear power plants becomes the quantitative software reliability assessment. Software reliability models have been successfully applied to many industrial applications, but have the unfortunate drawback of requiring data from which one can formulate a model. Software that is developed for safety critical applications is frequently unable to produce such data for at least two reasons. First, the software is frequently one-of-a-kind, and second, it rarely fails. Safety critical software is normally expected to pass every unit test producing precious little failure data. The basic premise of the rare events approach is that well-tested software does not fail under normal routine and input signals, which means that failures must be triggered by unusual input data and computer states. The failure data found under the reasonable testing cases and testing time for these conditions should be considered for the quantitative reliability assessment. We presented the quantitative reliability assessment methodology of safety critical software for rare failure cases in this paper.

Study on Selftest Requirements in Cryptographic Module Validation Program with FIPS-OpenSSL Source Code Analysis (FIPS-OpenSSL 코드 분석을 통한 암호모듈 자가시험 보안요구사항 분석)

  • Seo, Seog Chung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.985-996
    • /
    • 2019
  • This paper analyzes the source code of FIPS-OpenSSL cryptographic module approved as FIPS cryptographic module in USA and shows how the selftest requirements are implemented as software cryptographic library with respect to pre-operational test and conditional tests. Even though FIPS-OpenSSL follows FIPS 140-2 standard, lots of security requirements are similar between FIPS 140-2 and Korean cryptographic module validation standards. Therefore, analysis from this paper contributes to help Korean cryptographic module vendors develop correct and secure selftest functions on their own cryptographic modules, which results in reducing the test period.

An Optimized V&V Methodology to Improve Quality for Safety-Critical Software of Nuclear Power Plant (원전 안전-필수 소프트웨어의 품질향상을 위한 최적화된 확인 및 검증 방안)

  • Koo, Seo-Ryong;Yoo, Yeong-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • As the use of software is more wider in the safety-critical nuclear fields, so study to improve safety and quality of the software has been actively carried out for more than the past decade. In the nuclear power plant, nuclear man-machine interface systems (MMIS) performs the function of the brain and neural networks of human and consists of fully digitalized equipments. Therefore, errors in the software for nuclear MMIS may occur an abnormal operation of nuclear power plant, can result in economic loss due to the consequential trip of the nuclear power plant. Verification and validation (V&V) is a software-engineering discipline that helps to build quality into software, and the nuclear industry has been defined by laws and regulations to implement and adhere to a through verification and validation activities along the software lifecycle. V&V is a collection of analysis and testing activities across the full lifecycle and complements the efforts of other quality-engineering functions. This study propose a methodology based on V&V activities and related tool-chain to improve quality for software in the nuclear power plant. The optimized methodology consists of a document evaluation, requirement traceability, source code review, and software testing. The proposed methodology has been applied and approved to the real MMIS project for Shin-Hanul units 1&2.

The Development of Neuromuscular Electrical Stimulation Medical Devices for The Treatment of Non-implantable Urinary Incontinence (비이식형 요실금 치료용 신경근 전기자극 의료기기 개발)

  • Lee, Jae-Yong;Lee, Chang-Doo;Kwon, Ki-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • In this paper, the neuromuscular electrical stimulation medical devices for non-implantable incontinence treatment other than vaginal insertion type was developed and commercialized. The structure of medical devices for electrical stimulation based on the anatomy of the pelvic floor muscle designed. Then, the optimum parameters that may be effective in pelvic floor muscle electrical stimulation was set. The circuit system based on the optimum parameters were designed and manufactured. The frequency of the pulse voltage for electrical stimulation is 75[Hz], the pulse width is 300[${\mu}s$], the development of medical devices was to have seven program functions to the various treatments. The circuit system of medical devices was composed of microcontroller, comparator and converter. The performance of the developed circuit system in KTC(Korea Testing Certification) were carried out medical equipment inspection test. Test results, test specifications were satisfied with the medical device, the performance was verified to be commercialized as a medical device. The development of medical devices were validated risk assessment and product performance through a software validation. Commercialization of medical equipment was acquired to enable the certification standards of the international standard IEC 60601-1.

Architecture of Software Testing Tool for Railway Signalling through Actual Use Interface Channel (실사용 인터페이스를 이용한 열차제어 소프트웨어 테스팅 도구의 구조)

  • Hwang, Jong-Gyu;Baek, Jong-Hyun;Jo, Hyun-Jeong;Lee, Kang-Mi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.880-886
    • /
    • 2014
  • Many railway signalling functions have increasingly depended on computer software with recent development in computing technology, leading to evolution into more flexible and intelligent railway signalling system. Meanwhile, software programs are likely to have many errors and the cost incurred by such errors has increased. Especially, if fatal software error occurs during railway operation, it may result in loss of lives. So the software verification and validation have become more important. It is needed for software functional safety tool to support these, but most commercial tools depend on direct access to the system's memory, resulting in many difficulties in application. Owing to such difficulties and complexity, they are rarely used in railway signalling system software validation. In this study, a new testing tool for software functional testing through an external interface that can be easily used in functional testing of software was developed. Such testing tool allows development and analysis of test cases for black-box testing through analysis of actually used interface protocols, leading to increased user convenience.

Validation Test Codes Development of Static Analysis Tool for Secure Software (안전한 소프트웨어 개발을 위한 정적분석 도구 시험코드 개발)

  • Bang, Jiho;Ha, Rhan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.420-427
    • /
    • 2013
  • Recently, for secure software development, static analysis tools have been used mostly to analyze the source code of the software and identify software weaknesses caused of vulnerabilities. In order to select the optimal static analysis tool, both weaknesses rules and analysis capabilities of the tool are important factors. Therefore, in this paper we propose the test codes developed for evaluating the rules and analysis capabilities of the tools. The test codes to involve 43 weaknesses such as SQL injection etc. can be used to evaluate the adequacy of the rules and analysis capabilities of the tools.