• Title/Summary/Keyword: Software V&V

Search Result 732, Processing Time 0.027 seconds

A Study on the Development and usefulness of the x/y Plane and z Axis Resolution Phantom for MDCT Detector (MDCT 검출기의 x/y plane과 z축 분해능 팬텀 개발 및 유용성에 관한 연구)

  • Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2022
  • The aim of this study is to establish a new QC method that can simultaneously evaluate the resolution of the x/y plane and the z-axis by producing a phantom that can reflect exposure and reconstruction parameter of MDCT system. It was used with Aquilion ONE(Cannon Medical System, Otawara, Japan), and the examination was scanned using of 120 kV, 260 mA, and the D-FOV of 300 mm2. It produced new SSP phantom modules in which two aluminum plates inclined at 45° to a vertical axis and a transverse axis to evaluate high contrast resolution of x/y plane and z axis. And it changed factors such as the algorithm, distance from gantry iso-center. All images were reconstructed in five steps from 0.6 mm to 10.0 mm slice thickness to measure resolution of x/y plane and z-axis. The image data measured FWHM and FWTM using Profile tool of Aquarius iNtusion Edition ver. 4.4.13 P6 software(Terarecon, California, USA), and analysed SPQI and signal intensity by ImageJ program(v1.53n, National Institutes of Health, USA). It decreased by 4.09~11.99%, 4.12~35.52%, and 4.70~37.64% in slice thickness of 2.5 mm, 5.0 mm, and 10.0 mm for evaluating the high contrast resolution of x/y plane according to distance from gantry iso-center. Therefore, the high contrast resolution of the x/y plane decreased when the distance from the iso-center increased or the slice thickness increased. Additionally, the slice thicknesses of 2.5 mm, 5.0 mm, and 10.0 mm with a high algorithm increased 74.83, 15.18 and 81.25%. The FWHM was almost constant on the measured SSP graph for evaluating the accuracy of slice thickness which represents the resolution of x/y plane and z-axis, but it was measured to be higher than the nominal slice thickness set by user. The FWHM and FWTM of z-axis with axial scan mode tended to increase significantly as the distance increased from gantry iso-center than the helical mode. Particularly, the thinner slice thickness that increased error range compare with the nominal slice thickness. The SPQI increased with thick slice thickness, and that was closer to 90% in the helical scan than the axial scan. In conclusion, by producing a phantom suitable for MDCT detectors and capable of quantitative resolution evaluation, it can be used as a specific method in the management of research quality and management of outdated equipment. Thus, it is expected to contribute greatly to the discrimination of lesions in the field of CT imaging.

A Study on Delay Time Building of Underpass for Small Car (소형차 전용 지하차도 도입에 따른 지체도 분석에 관한 연구)

  • Lee, Young-Woo
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.131-137
    • /
    • 2011
  • The development of underground space essentially leads to increase in construction cost and installation of a large structure also acts as a factor deteriorating fine sight of the city. Accordingly, there recently is a trend to make city center structures light and small if possible. In this study, for efficient development of underground space, we analyzed the change in the average delay time in comparison to the existing underpass and the influence thereof using a microscopic simulation software VISSIM 5.20 after controlling heavy vehicles not to use the underpass and to detour using the intersection above the underpass, and gradually increasing the ratio of heavy vehicles in accordance with v/c of the access road in order to examine efficiency of introducing an underpass exclusive to small cars at an underground road installed and being operated in a city road area, and presented installation standard for underpass exclusive to small vehicles adequate to the traffic characteristics. Considering the findings of the study, introduction of underpass exclusive to small cars judged to be beneficial in the aspects of reduction in the economic loss resulting from land purchase, environmental damage due to construction of large traffic structures and environment-friendly green traffic.

Strength and failure characteristics of the rock-coal combined body with single joint in coal

  • Yin, Da W.;Chen, Shao J.;Chen, Bing;Liu, Xing Q.;Ma, Hong F.
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1113-1124
    • /
    • 2018
  • Geological dynamic hazards during deep coal mining are caused by the failure of a composite system consisting of the rock and coal layers, whereas the joint in coal affects the stability of the composite system. In this paper, the compression test simulations for the rock-coal combined body with single joint in coal were conducted using $PFC^{2D}$ software and especially the effects of joint length and joint angle on strength and failure characteristics in a rock-coal combined body were analyzed. The joint length and joint angle exhibit a deterioration effect on the strength and affect the failure modes. The deterioration effect of joint length of L on the strength can be neglected with a tiny variation at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ between the loading direction and joint direction. While, the deterioration effect of L on strength are relatively large at ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$. And the peak stress and peak strain decrease with the increase of L. Additionally, the deterioration effect of ${\alpha}$ on the strength becomes larger with the increase of L. With the increase of ${\alpha}$, the peak stress and peak strain first decrease and then increase, presenting "V-shaped" curves. And the peak stress and peak strain at ${\alpha}$ of $45^{\circ}$ are the smallest. Moreover, the failure mainly occurs within the coal and no apparent failure is observed for rock. At ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$, the secondary shear cracks generated in or close to the joint tips, cause the structural instability failure of the combined body. Therefore, their failure models present as a shear failure along partial joint plane direction and partially cutting across the coal body or a shear failure along the joint plane direction. However, at ${\alpha}$ of $60^{\circ}$ and L of 10 mm, the "V-shaped" shear cracks cutting across the coal body cause its final failure. While crack nucleations at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ are randomly distributed in the coal, the failure mode shows a V-shaped shear failure cutting across the coal body.

A Genome-Wide Study of Moyamoya-Type Cerebrovascular Disease in the Korean Population

  • Joo, Sung-Pil;Kim, Tae-Sun;Lee, Il-Kwon;Kim, Joon-Tae;Park, Man-Seok;Cho, Ki-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.6
    • /
    • pp.486-491
    • /
    • 2011
  • Objective : Structural genetic variation, including copy-number variation (CNV), constitutes a substantial fraction of total genetic variability, and the importance of structural variants in modulating susceptibility is increasingly being recognized. CNV can change biological function and contribute to pathophysiological conditions of human disease. Its relationship with common, complex human disease in particular is not fully understood. Here, we searched the human genome to identify copy number variants that predispose to moya-moya type cerebrovascular disease. Methods : We retrospectively analyzed patients who had unilateral or bilateral steno-occlusive lesions at the cerebral artery from March, 2007, to September, 2009. For the 20 subjects, including patients with moyamoya type pathologies and three normal healthy controls, we divided the subjects into 4 groups : typical moyamoya (n=6), unilateral moyamoya (n=9), progression unilateral to typical moyamoya (n=2) and non-moyamoya (n=3). Fragmented DNA was hybridized on Human610Quad v1.0 DNA analysis BeadChips (Illumina). Data analysis was performed with GenomeStudio v2009.1, Genotyping 1.1.9, cnvPartition_v2.3.4 software. Overall call rates were more than 99.8%. Results : In total, 1258 CNVs were identified across the whole genome. The average number of CNV was 45.55 per subject (CNV region was 45.4). The gain/loss of CNV was 52/249, having 4.7 fold higher frequencies in loss calls. The total CNV size was 904,657,868, and average size was 993,038. The largest portion of CNVs (613 calls) were 1M-10M in length. Interestingly, significant association between unilateral moyamoya disease (MMD) and progression of unilateral to typical moyamoya was observed. Conclusion : Significant association between unilateral MMD and progression of unilateral to typical moyamoya was observed. The finding was confirmed again with clustering analysis. These data demonstrate that certain CNV associate with moyamoya-type cerebrovascular disease.

Performance Evaluation of V2X Communication System Under a High-Speed Driving (고속 주행 환경에서의 V2X 통신 성능 측정 시스템)

  • Kang, Bo-young;Bae, Jeongkyu;Seo, Woo-Chang;Park, Jong Woo;Yang, EunJu;Seo, Dae-Wha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1069-1076
    • /
    • 2017
  • C-ITS(Cooperative-Intelligent Transportation System) provides services that require strict real-time such as forward collision warning, road safety service and emergency stop. WAVE(Wireless Access in Vehicular Environments), a core technology of C-ITS, is a technology designed for high-speed driving. However, in order to provide stable communication service by applying to real road environment, various performance tests of real vehicular environment are required. In the real road environment, WAVE communication performance is influenced by the surrounding environment such as moving vehicle, road shape and topography. Especially, when the vehicle is moving at high speed, the traveling position according to the speed of the vehicle, The surrounding environment changes rapidly. Such changes are factors affecting the communication performance, therefore a system and methods for analyzing them are needed. In this paper, we propose the configuration and test method of an effective performance evaluation system under high-speed driving and describe the results of analyzing the communication performance based on the data measured through the actual vehicle test.

Evaluation of the Radiopacity of Contemporary Luting Cements by Digital Radiography (디지털방사선촬영술을 이용한 합착용 시멘트의 방사선불투과성 평가)

  • An, Seo-Young;Lee, Du-Hyeong;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.4
    • /
    • pp.377-383
    • /
    • 2013
  • This study examined the radiopacity of eight contemporary luting cements by direct digital radiography. Five disc-shaped specimens ($5mm{\times}1mm$) were prepared for each material tested (BisCem, Clearfil SA Luting, Duolink, Maxcem Elite, Multilink Speed, Panavia F 2.0, RelyX Unicem Clicker, V-link). The specimens were radiographed using a Kodak CS 7600 image plate (Carestream Health, Inc., Rochester, NY, USA) and an aluminum step wedge with a range of thicknesses (1.5 to 16.5 mm in 1.5 mm increments) and a 1 mm tooth used as a reference. A dental X-ray machine Kodak 2200 Intraoral X-ray System (Carestream Health, Inc., Rochester, NY, USA), operating at 70 kVp, 4 mA, 0.156 s and a source-to-sample distance of 30 cm, was used. According to international standards, the radiopacity of the specimens was compared with that of an aluminum step wedge using NIH ImageJ software (available at http://rsb.info.nih.gov/ij/).The data was analyzed by ANOVA and a Tukey's post hoc test. Maxcem Elite (5.66) showed the highest radiopacity of all materials, followed in order by Multilink Speed (3.87) and V-link (2.83). The radiopacity of Clearfil SA Luting (1.35), BisCem (1.33), Panavia F 2.0 (1.29) and Duolink (1.10) were between enamel (1.79) and dentin (0.19). RelyX Unicem Clicker (0.71) showed the lowest radiopacity, which was higher than that of dentin. All materials showed a radiopacity above the minimum recommended by the International Organization for Standardization and the American National Standards/American Dental Association with the exception of RelyX Unicem Clicker.

SHVC-based Texture Map Coding for Scalable Dynamic Mesh Compression (스케일러블 동적 메쉬 압축을 위한 SHVC 기반 텍스처 맵 부호화 방법)

  • Naseong Kwon;Joohyung Byeon;Hansol Choi;Donggyu Sim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.314-328
    • /
    • 2023
  • In this paper, we propose a texture map compression method based on the hierarchical coding method of SHVC to support the scalability function of dynamic mesh compression. The proposed method effectively eliminates the redundancy of multiple-resolution texture maps by downsampling a high-resolution texture map to generate multiple-resolution texture maps and encoding them with SHVC. The dynamic mesh decoder supports the scalability of mesh data by decoding a texture map having an appropriate resolution according to receiver performance and network environment. To evaluate the performance of the proposed method, the proposed method is applied to V-DMC (Video-based Dynamic Mesh Coding) reference software, TMMv1.0, and the performance of the scalable encoder/decoder proposed in this paper and TMMv1.0-based simulcast method is compared. As a result of experiments, the proposed method effectively improves in performance the average of -7.7% and -5.7% in terms of point cloud-based BD-rate (Luma PSNR) in AI and LD conditions compared to the simulcast method, confirming that it is possible to effectively support the texture map scalability of dynamic mesh data through the proposed method.

Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation

  • Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
    • Korean Journal of Radiology
    • /
    • v.24 no.4
    • /
    • pp.294-304
    • /
    • 2023
  • Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.

Design and Implementation of the Transmit and Receive Equipments for Wide Band Signals of a Spaceborne High Resolution Synthetic Aperture Radar (위성탑재 고해상도 합성개구 레이다용 광대역 신호 송 수신장치 설계 및 제작)

  • Ka, Min-Ho;Jeon, Byung-Tae;Kim, Se-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.44-51
    • /
    • 2001
  • In general, the realization of spaceborne system is constrained by its space environment. In this paper, we suggest chirp stitching technique which generates and processes wideband radar signal with minimum hardware, design and implement transmit/receive equipments and operating programs to satisfy the requirement of this spaceborne high resolution SAR(Synthetic Aperture Radar). We apply the top down design approach to this system, and divide hardware into equipment, module and circuit levels, and software into SR(Software Requirement), AD(Architecture Design), DD(Detailed Design) and coding levels, and then extract each requirement to satisfy the wideband requirement of this spaceborne high resolution SAR. We, at first, test the hardware functions, confirm the wideband handling capability of this system with 85MHz wideband signals generated from two 42.5MHz narrow band signals, and show that this system can be used in spaceborne high resolution SARs.

  • PDF

Implementation of efficient DNA Sequence Generate System with Genetic Algorithm (유전자 알고리즘을 이용한 DNA 서열 생성 시스템의 효율적인 구현에 대한 연구)

  • Lee Eun-Kyung;Lee Seung-Ryeol;Kim Dong-Soon;Chung Duck-Jin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.44-59
    • /
    • 2006
  • This paper describes the efficient implementation of DNA sequence generate system with genetic algorithm for reducing computation time of NACST. The proposed processor is based on genetic algerian with fitness functions which would suit the point of reference for generated sequences. In order to implement efficient hardware structure, we used the pipelined structure. In addition our design was applied the parallelism to achieve even better simulation time than the sequence generator system which is designed on software. In this paper, our hardware is implemented on the FPGA board with xc2v6000 devices. Through experiment, the proposed hardware achieves 467 times speed-up over software on a PC and sequence generate performance of hardware is same with software.