• Title/Summary/Keyword: Software Size Measurement

Search Result 102, Processing Time 0.027 seconds

A Red Ginseng Internal Measurement System Using Back-Projection (Back-Projection을 활용한 홍삼 내부 측정 시스템)

  • Park, Jaeyoung;Lee, Sangjoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.10
    • /
    • pp.377-382
    • /
    • 2018
  • This study deals with internal state and tissue density analysis methods for red ginseng grade determination. For internal measurement of red ginseng, there have been various studies on nondestructive testing methods since the 1990s, It was difficult to grasp the most important inner hole and inside whites in the grading. So in this study, we developed a closed capturing device for infra-red illumination environment, and developed an internal measurement system that can detect the presence and diameter of inner hole and inside whites. Made devices consisted of infrared lights with a high transmission rate of red ginseng in 920 nanometer wave band, a infra-red camera and a Y axis actuator with a red ginseng automatically controlled focus on the camera. The proposed algorithm performs an auto-focus system on the Y-axis actuator to automatically adjust the sharp focus of the object according to the size and thickness. Then red ginseng is rotated $360^{\circ}$ at $1^{\circ}$ intervals and 360 total images are acquired, and reconstructed as a sinogram through Radon transform and Back-projection algorithm was performed to acquire internal images of red ginseng. As a result of the algorithm, it was possible to acquire internal cross-sectional image regardless of the thickness and shape of red ginseng. In the future, if more than 10,000 different shapes and sizes of red ginseng internal cross-sectional image are acquired and the classification criterion is applied, it can be used as a reliable automated ginseng grade automatic measurement method.

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.

Verification of Indicator Rotation Correction Function of a Treatment Planning Program for Stereotactic Radiosurgery (방사선수술치료계획 프로그램의 지시자 회전 오차 교정 기능 점검)

  • Chung, Hyun-Tai;Lee, Re-Na
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • Objective: This study analyzed errors due to rotation or tilt of the magnetic resonance (MR) imaging indicator during image acquisition for a stereotactic radiosurgery. The error correction procedure of a commercially available stereotactic neurosurgery treatment planning program has been verified. Materials and Methods: Software virtual phantoms were built with stereotactic images generated by a commercial programming language, Interactive Data Language (version 5.5). The thickness of an image slice was 0.5 mm, pixel size was $0.5{\times}0.5mm$, field of view was 256 mm, and image resolution was $512{\times}512$. The images were generated under the DICOM 3.0 standard in order to be used with Leksell GammaPlan$^{(R)}$. For the verification of the rotation error correction function of Leksell GammaPlan$^{(R)}$, 45 measurement points were arranged in five axial planes. On each axial plane, there were nine measurement points along a square of length 100 mm. The center of the square was located on the z-axis and a measurement point was on the z-axis, too. Five axial planes were placed at z=-50.0, -30.0, 0.0, 30.0, 50.0 mm, respectively. The virtual phantom was rotated by $3^{\circ}$ around one of x, y, and z-axis. It was also rotated by $3^{\circ}$ around two axes of x, y, and z-axis, and rotated by $3^{\circ}$ along all three axes. The errors in the position of rotated measurement points were measured with Leksell GammaPlan$^{(R)}$ and the correction function was verified. Results: The image registration errors of the virtual phantom images was $0.1{\pm}0.1mm$ and it was within the requirement of stereotactic images. The maximum theoretical errors in position of measurement points were 2.6 mm for a rotation around one axis, 3.7 mm for a rotation around two axes, and 4.5 mm for a rotation around three axes. The measured errors in position was $0.1{\pm}0.1mm$ for a rotation around single axis, $0.2{\pm}0.2mm$ for double and triple axes. These small errors verified that the rotation error correction function of Leksell GammaPlan$^{(R)}$ is working fine. Conclusion: A virtual phantom was built to verify software functions of stereotactic neurosurgery treatment planning program. The error correction function of a commercial treatment planning program worked within nominal error range. The virtual phantom of this study can be applied in many other fields to verify various functions of treatment planning programs.

Quantitative Assessment Technology of Small Animal Myocardial Infarction PET Image Using Gaussian Mixture Model (다중가우시안혼합모델을 이용한 소동물 심근경색 PET 영상의 정량적 평가 기술)

  • Woo, Sang-Keun;Lee, Yong-Jin;Lee, Won-Ho;Kim, Min-Hwan;Park, Ji-Ae;Kim, Jin-Su;Kim, Jong-Guk;Kang, Joo-Hyun;Ji, Young-Hoon;Choi, Chang-Woon;Lim, Sang-Moo;Kim, Kyeong-Min
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 2011
  • Nuclear medicine images (SPECT, PET) were widely used tool for assessment of myocardial viability and perfusion. However it had difficult to define accurate myocardial infarct region. The purpose of this study was to investigate methodological approach for automatic measurement of rat myocardial infarct size using polar map with adaptive threshold. Rat myocardial infarction model was induced by ligation of the left circumflex artery. PET images were obtained after intravenous injection of 37 MBq $^{18}F$-FDG. After 60 min uptake, each animal was scanned for 20 min with ECG gating. PET data were reconstructed using ordered subset expectation maximization (OSEM) 2D. To automatically make the myocardial contour and generate polar map, we used QGS software (Cedars-Sinai Medical Center). The reference infarct size was defined by infarction area percentage of the total left myocardium using TTC staining. We used three threshold methods (predefined threshold, Otsu and Multi Gaussian mixture model; MGMM). Predefined threshold method was commonly used in other studies. We applied threshold value form 10% to 90% in step of 10%. Otsu algorithm calculated threshold with the maximum between class variance. MGMM method estimated the distribution of image intensity using multiple Gaussian mixture models (MGMM2, ${\cdots}$ MGMM5) and calculated adaptive threshold. The infarct size in polar map was calculated as the percentage of lower threshold area in polar map from the total polar map area. The measured infarct size using different threshold methods was evaluated by comparison with reference infarct size. The mean difference between with polar map defect size by predefined thresholds (20%, 30%, and 40%) and reference infarct size were $7.04{\pm}3.44%$, $3.87{\pm}2.09%$ and $2.15{\pm}2.07%$, respectively. Otsu verse reference infarct size was $3.56{\pm}4.16%$. MGMM methods verse reference infarct size was $2.29{\pm}1.94%$. The predefined threshold (30%) showed the smallest mean difference with reference infarct size. However, MGMM was more accurate than predefined threshold in under 10% reference infarct size case (MGMM: 0.006%, predefined threshold: 0.59%). In this study, we was to evaluate myocardial infarct size in polar map using multiple Gaussian mixture model. MGMM method was provide adaptive threshold in each subject and will be a useful for automatic measurement of infarct size.

A Measurement Method for Cervical Neural Foraminal Stenosis Ratio using 3-dimensional CT (3차원 컴퓨터단층촬영상을 이용한 신경공 협착률 측정방법)

  • Kim, Yon-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.975-980
    • /
    • 2020
  • Cervical neural foraminal stenosis is a very common spinal disease that affects a relatively large number of people of all ages. However, since imaging methods that quantitatively provide neural foraminal stenosis are lacking, this study attempts to present quantitative measurement results by reconstructing 3D computed tomography images. Using a 3D reconstruction software, the surrounding bones were removed, including the spinous process, transverse process, and lamina of the cervical spine so that the neural foramen were well observed. Using Image J, a region of interest including the neural foramen area of the 3D image was set, and the number of pixels of the neural foramen area was measured. The neural foramen area was calculated by multiplying the number of measured pixels by the pixel size. In order to measure the widest area of the neural foramen, it was measured between 40-50 degrees in the opposite direction and 15-20 degrees toward the head. The measured cervical neural foramen area showed consistent measurement values. The largest measured area of the right neural foramen C5-6 was 12.21 ㎟, and after 2 years, the area was measured to be 9.95 ㎟, indicating that 18% stenosis had progressed. Since 3D reconstruction using axial CT scan images, no additional radiation exposure is required, and the area of stenosis can be objectively presented. In addition, it is good to explain to patients with neural stenosis while viewing 3D images, and it is considered a good method to be used in the evaluation of the progression of stenosis and post-operative evaluation.

ACCURACY OF CONE-BEAM COMPUTED TOMOGRAPHY IN PREDICTING THE DIAMETER OF UNERUPTED TEETH (Cone-beam computed tomography를 이용한 미맹출 영구치의 계측)

  • Kim, Seong-Hee;Kim, Young-Jong;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.2
    • /
    • pp.139-144
    • /
    • 2012
  • The purpose of this study was to evaluate the accuracy and reproducibility of measuring the size of unerupted permanent tooth via cone beam computed tomography(CBCT). Ten children were scanned with dental CBCT, and 3-dimensional reconstruction of the dentitions were generated CBCT. Mesio-distal dimension and buccolingual dimension of the teeth were made directly on the model with a high-precision digitalcaliper and on the CBCT by using three-dimensional dental imaging software. Reliability and accuracy were assessed by using intraclass correlation and paired $t$-tests. ($p$ <0.05) The results were as follows : 1. Intraclass correlations were above 0.9 for Both the CBCT and the model measurements, showinghigh reliability. 2. Although there were high correlation values(r=0.91) between CBCT and model messurement methods, comparisons between the CBCT and model messurement methods showed a statistically significant difference($p$ <0.05). 3. The CBCT measurements tended to slightly underestimate by 0.2 mm. But, the systematic difference of CBCT measurements were clinically acceptable Therefore, CBCT measurement method can be used to measure the size of unerupted teeth in a sufficiently accurate way.

LED frame inspection system design and implementation (LED 프레임 검사 시스템 설계 및 구현)

  • Park, Byung-Joon;Kim, Sun-jib
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.359-363
    • /
    • 2017
  • The LED (Liquid Emitting Diode) frame device is a big part of the representative display industry in Korea. LED is an essential part for TV, monitor, notebook, and mobile phone. In Japan, Taiwan, China and other countries, investment in LEDs has been strengthened, and productivity has become an important issue. However, as the size of the parts becomes smaller, the inconsistent inspection by the human eye becomes a problem of reliability, so that the automatic inspection process becomes an essential issue in the field of LED module inspection. In this paper, we investigate defects in visual inspection process using computer vision technology. The inspection of the LED frame is made quickly and accurately, thereby improving the efficiency of the process and shortening the inspection time. As a result of applying the inspection system to the field, we confirmed that it is possible to inspect quickly and accurately.

Contactless Biometric Using Thumb Image (엄지손가락 영상을 이용한 비접촉식 바이오인식)

  • Lim, Naeun;Han, Jae Hyun;Lee, Eui Chul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.671-676
    • /
    • 2016
  • Recently, according to the limelight of Fintech, simple payment using biometric at smartphone is widely used. In this paper, we propose a new contactless biometric method using thumb image without additional sensors unlike previous biometrics such as fingerprint, iris, and vein recognition. In our method, length, width, and skin texture information are used as features. For that, illumination normalization, skin region segmentation, size normalization and alignment procedures are sequentially performed from the captured thumb image. Then, correlation coefficient is calculated for similarity measurement. To analyze recognition accuracy, genuine and imposter matchings are performed. At result, we confirmed the FAR of 1.68% at the FRR of 1.55%. In here, because the distribution of imposter matching is almost normal distribution, our method has the advantage of low FAR. That is, because 0% FAR can be achieved at the FRR of 15%, the proposed method is enough to 1:1 matching for payment verification.

Design of a Vehicle-Mounted GPS Antenna for Accurate Positioning (차량 정밀 측위용 이중대역 GPS 안테나 설계)

  • Pham, Nu;Chung, Jae-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.145-150
    • /
    • 2016
  • The capability of accurate positioning and tracking is necessary to implement an unmanned autonomous driving system. The moving-baseline GPS Technique is a promising candidate to mitigate positioning errors of conventional GPS system. It provides accurate positioning data based on the phase difference between received signals from multiple GPS antennas mounted on the same platform. In this paper, we propose a dual-band dual-circularly-polarized antenna suitable for the moving-baseline GPS. The proposed antenna operates at GPS L1 and L2 bands, and fed by the side of the antenna instead of the bottom. The antenna is firstly designed by calculating theoretical values of key parameters, and then optimized by means of 3D full-wave simulation software. Simulation and measurement results show that the optimized antenna offers 6.1% and 3.7% bandwidth at L1 and L2, respectively, with axial ratio bandwidth of more than 1%. The size of the antenna is $73mm{\times}73mm{\times}6.4mm$, which is small and low-profile.

A hardware architecture based on the NCC algorithm for fast disparity estimation in 3D shape measurement systems (고밀도 3D 형상 계측 시스템에서의 고속 시차 추정을 위한 NCC 알고리즘 기반 하드웨어 구조)

  • Bae, Kyeong-Ryeol;Kwon, Soon;Lee, Yong-Hwan;Lee, Jong-Hun;Moon, Byung-In
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.99-111
    • /
    • 2010
  • This paper proposes an efficient hardware architecture to estimate disparities between 2D images for generating 3D depth images in a stereo vision system. Stereo matching methods are classified into global and local methods. The local matching method uses the cost functions based on pixel windows such as SAD(sum of absolute difference), SSD(sum of squared difference) and NCC(normalized cross correlation). The NCC-based cost function is less susceptible to differences in noise and lighting condition between left and right images than the subtraction-based functions such as SAD and SSD, and for this reason, the NCC is preferred to the other functions. However, software-based implementations are not adequate for the NCC-based real-time stereo matching, due to its numerous complex operations. Therefore, we propose a fast pipelined hardware architecture suitable for real-time operations of the NCC function. By adopting a block-based box-filtering scheme to perform NCC operations in parallel, the proposed architecture improves processing speed compared with the previous researches. In this architecture, it takes almost the same number of cycles to process all the pixels, irrespective of the window size. Also, the simulation results show that its disparity estimation has low error rate.