• Title/Summary/Keyword: Software Size Measurement

Search Result 102, Processing Time 0.025 seconds

A Design of Multi-band Antenna using asymmetric Bow-tie structure (비대칭 보우 타이 구조를 이용한 다중 대역 안테나 설계)

  • Jang, Jeong-Seok;Kim, Dae-Woong;Choi, Yong-Gyu;Hong, Ui-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.2
    • /
    • pp.41-50
    • /
    • 2010
  • In this paper, a multi-band antenna with novel structure for mobile communications is designed and fabricated. The proposed antenna has the Multi-band antenna characteristics by two common-grounded slots with different size and angle. In order to reduce size and to enhance the gain of the antenna, a reflector is consisted of chokes on the three sides. It is optimized by using the CST Microwave Studio commercial software based on the FIA(Finite Integration Algorithm) and PBA(Perfect Boundary Approximation), and then the fabricating and measuring is practiced. As a result of measurement, the reflection coefficient is less than -11 dB(VSWR < 1.8) and the gain of antenna is more than 6dBi at 824~894MHz and 1885-2500MHz.

Design of Broadband Planar Monopole Antenna (광대역 평면형 모노폴 안테나의 설계)

  • Lee Yun-Kyung;Yoon Hyun-Bo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.359-365
    • /
    • 2005
  • This paper designed a very low profle, light and broadband internal antenna for operating at PCS, IMT-2000 and Wibro bands. The proposed antenna can be reduced the size by using shorting-pin and a broadband characteristic is obtained by using slit. It is optimized by using the CST Microwave Studio commercial software based on the FIA(Finite Integration Algorithm) and PBA(Perfect Boundary Approximation) and then fabricated and measured. As a result of measurement, the bandwidth(VSWR<2.5) is $40.8\;\%$ at $1.934\;\cal{GHz}$ and the size of antenna is 3$30\;\cal{mm}\times10\;\cal{mm}\times0.2\;\cal{mm}$.

Effects of Residual Stress and Surface Defect on the Mechanical Properties of the High Carbon Steel Filaments (고 탄소 미세 강선의 기계적 특성에 미치는 잔류 응력과 표면 결함의 영향)

  • Yang, Y.S.;Bae, J.G.;Park, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.134-137
    • /
    • 2008
  • The effects of residual stress and surface defects on the mechanical properties of the high carbon steel filament used for the automotive tire have been experimentally investigated. The samples were fabricated with annealing temperature. The residual stress was measured by focused ion beam and strain mapping software which has advantages, such as data with high accuracy and fast data acquisition time. Mechanical properties, such as tensile strength and fatigue resistance, were gradually increased up to $200^{\circ}C$ and then slightly decreased. From the measurement of residual stress and level of surface defect, it was revealed that the critical factor was varied with different temperature region. That is, the fatigue resistance increased due to decreasing the residual stress and decreased due to increasing the size and distribution of surface defect.

  • PDF

Effect of Flow Field and Detection Volume in the Optical Particle Sensor on the Detection Efficiency (광학입자센서 내 유동장과 측정영역이 측정효율에 미치는 영향)

  • Kim, Young-Gil;Jeon, Ki-Soo;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3162-3167
    • /
    • 2007
  • The OPS (Optical Particle Sensor) using light scattering from the particles (real-time measurement without physical contact to the particles) can be used for cleanroom or atmospheric environment monitoring. For particles smaller than 300 nm, the detection efficiency becomes lower as scattered light decreases with particle size. To obtain higher detection efficiency with small particles, the flow field in particle chamber and the detection volume should be designed optimally to achieve maximum scattered light from the particles. In this study, a commercial computational fluid dynamics software FLUENT was used to simulate the gas flow field and particle trajectories with various optical chamber designs for 300 nm PSL particle. For estimation of laser viewing volume, we used a commercial computational optical design program ZEMAX. The results will be a great help in the development of OPS which can measure small particles with higher detection efficiency.

  • PDF

A Side-Fed Circularly-Polarized Patch Antenna with a Dielectric Loading

  • Jeong, Ji-Young;Choi, Seung-Mo;Enkhbayar, Bayanmunkh;Sodnomtseren, Ononchimeg;Ahn, Bierng-Chearl
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.3
    • /
    • pp.122-128
    • /
    • 2007
  • In this paper, we present the design and measurement of a side-fed circularly-polarized patch antenna with a dielectric loading. The antenna consists of a comer-truncated rectangular patch, an L-shaped ground plane, a dielectric loading material, and a coaxial probe. An antenna operating at the UHF band (910 MHz) for the RFID reader applications is optimized using a commercial software. The size of the patch is reduced by a factor of 1.73 by loading the patch with mono-cast(MC) nylon. Measurements of the fabricated antenna show performance characteristics comparable to those of much larger commercial RFID reader antennas.

Three-Dimensional Volume Assessment Accuracy in Computed Tomography Using a Phantom (모형물을 이용한 전산화 단층 촬영에서 3차원적 부피측정의 정확성 평가)

  • Kim, Hyun-Su;Wang, Ji-Hwan;Lim, Il-Hyuk;Park, Ki-Tae;Yeon, Seong-Chan;Lee, Hee-Chun
    • Journal of Veterinary Clinics
    • /
    • v.30 no.4
    • /
    • pp.268-272
    • /
    • 2013
  • The purpose of this study was to assess the effects of reconstruction kernel, and slice thickness on the accuracy of spiral CT-based volume assessment over a range of object sizes typical of synthetic simulated tumor. Spiral CT scanning was performed at various reconstruction kernels (soft tissue, standard, bone), and slice thickness (1, 2, 3 mm) using a phantom made of gelatin and 10 synthetic simulated tumors of different sizes (diameter 3.0-12.0 mm). Three-dimensional volume assessments were obtained using an automated software tool. Results were compared with the reference volume by calculating the percentage error. Statistical analysis was performed using ANOVA and setting statistical significance at P < 0.05. In general, smaller slice thickness and larger sphere diameters produced more accurate volume assessment than larger slice thickness and smaller sphere diameter. The measured volumes were larger than the actual volumes by a common factor depending on slice thickness; in 100HU simulated tumors that had statistically significant, 1 mm slice thickness produced on average 27.41%, 2 mm slice thickness produced 45.61%, 3 mm slice thickness produced 93.36% overestimates of volume. However, there was no statistically significant difference in volume error for spiral CT scans taken with techniques where only reconstruction kernel was changed. These results supported that synthetic simulated tumor size, slice thickness were significant parameters in determining volume measurement errors. For an accurate volumetric measurement of an object, it is critical to select an appropriate slice thickness and to consider the size of an object.

A Profile Tolerance Usage in GD&T for Precision Manufacturing (정밀제조를 위한 기하공차에서의 윤곽공차 사용)

  • Kim, Kyung-Wook;Chang, Sung-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.145-149
    • /
    • 2017
  • One of the challenges facing precision manufacturers is the increasing feature complexity of tight tolerance parts. All engineering drawings must account for the size, form, orientation, and location of all features to ensure manufacturability, measurability, and design intent. Geometric controls per ASME Y14.5 are typically applied to specify dimensional tolerances on engineering drawings and define size, form, orientation, and location of features. Many engineering drawings lack the necessary geometric dimensioning and tolerancing to allow for timely and accurate inspection and verification. Plus-minus tolerancing is typically ambiguous and requires extra time by engineering, programming, machining, and inspection functions to debate and agree on a single conclusion. Complex geometry can result in long inspection and verification times and put even the most sophisticated measurement equipment and processes to the test. In addition, design, manufacturing and quality engineers are often frustrated by communication errors over these features. However, an approach called profile tolerancing offers optimal definition of design intent by explicitly defining uniform boundaries around the physical geometry. It is an efficient and effective method for measurement and quality control. There are several advantages for product designers who use position and profile tolerancing instead of linear dimensioning. When design intent is conveyed unambiguously, manufacturers don't have to field multiple question from suppliers as they design and build a process for manufacturing and inspection. Profile tolerancing, when it is applied correctly, provides manufacturing and inspection functions with unambiguously defined tolerancing. Those data are manufacturable and measurable. Customers can see cost and lead time reductions with parts that consistently meet the design intent. Components can function properly-eliminating costly rework, redesign, and missed market opportunities. However a supplier that is poised to embrace profile tolerancing will no doubt run into resistance from those who would prefer the way things have always been done. It is not just internal naysayers, but also suppliers that might fight the change. In addition, the investment for suppliers can be steep in terms of training, equipment, and software.

Metrics Measuring a Quality based on Object-Oriented Design Characteristics (객체지향 설계의 특성을 고려한 품질 평가 메트릭스)

  • Kim, Yu-Kyung;Park, Jai-Nyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.373-384
    • /
    • 2000
  • There are many researches about metrics to measure a quality of Object-Oriented(OO) software. However, most of them have only discussed a concept or properties of metrics, and have not shown the detailed procedure for measuring them. They also define a measurement indicator as a threshold, but it has been influenced on a project size or application domains. In this paper, we propose metrics based on characteristics of OO design such as size, complexity, coupling and cohesion, and use a propotion to an average as the measurement indicator. It is easy to classify classes which have a result above the average, and to predict classes which reduced the quality of OO design. They will be modified to hold the average. Proposed metrics are analytically evaluated by Weyuker's nine properties. They are satisfied with seven properties except two properties co not apply to OO metrics. Also, we design a quality assessment system, ASSOD(ASsessment System of Object oriented Design), to measure the quality of the OO design independent of the platform.

  • PDF

Prototype Torso Pattern for Circular Knit using Virtual Garment Software (가상착의에 의한 환편물 상의의 패턴 설계 방법 연구)

  • Kim, Hyeong Jin;Kim,, Yeo-Sook
    • The Korean Journal of Community Living Science
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2011
  • We have made knitwear in a different way from the typical woven pattern; it does not have the dart, even for women's tops. The purpose of this research was to compare the fit and appearance of the torso pattern for circular knitted fabric between virtual try-on garments and real garments. First, a woman in her 20's was scanned by a 3D body scanner, and thus producing a virtual avatar. I prepared knit patterns and created a torso pattern appropriate for circular knitted fabric. Next, I measured the body size of the avatar. The 2D patterns for the torso and sleeves were developed using the Yuka Super ALPHA : Plus. The 3D virtual garments were made from the imported 2D patterns and were then tried on the 3D virtual avatars. Finally, the fit of the real garments and the virtual garments was compared. While the shape of the virtual try-on garments were similar to the real garments, the folding and sagging were different. This study found the length was the same as woven wear. However the actual bust size and the clothing size were the same which is not a typical characteristic of woven wear. In the case of hem measurement, more space was needed than actual body size but less space was needed than in woven patterns.

In Vitro Assessment of MRI Safety at 1.5 T and 3.0 T for Bone-Anchored Hearing Aid Implant (Bone-Anchored Hearing Aid Implant에 대한 1.5 T와 3.0 T에서 MRI 안전성의 생체외 평가)

  • Yeon, Kyoo-Jin;Kim, Hyun-Soo;Lee, Seung-keun;Lee, Tae-Soo
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • The aim of this study was to evaluate Magnetic Resonance Imaging safety by measuring the translational attraction, torque and susceptibility artifact for Bone-Anchored Hearing Aid (BAHA) implant at 1.5 T and 3.0 T MRI by standard criteria. In vitro assessment tools were made of acrylic-resin by American Society for Testing and Materials (ASTM) F2052-06 and F2119-07 standard. Translational attraction of BAHA implant was measured by the maximum deflection angle at 96 cm position, where the magnetically induced deflection was the greatest. The torque was assessed by the qualitative criteria of evaluating the alignment and rotation pattern, when the BAHA implant was positioned on a line with $45^{\circ}$ intervals inside the circular container in the center of the bore. The susceptibility artifact images were obtained using the hanged test tool, which was filled with $CuSO_4$ solution. And then the artifact size was measured using Susceptibility A rtifact Measurement (SA M) software. In results, the translational attraction was 0 mm at both 1.5 T and 3.0 T and the torque was 0(no torque) at 1.5 T, and +1(mild torque) at 3.0 T. The size of susceptibility artifacts was between 13.20 mm and 38.91 mm. Therefore, The BAHA implant was safe for the patient in clinical MR environment.