• Title/Summary/Keyword: Software Reuse

Search Result 394, Processing Time 0.023 seconds

Variability Dependency Analysis for Generating Business Process Models based on Variability Decisions (가변성 결정기반 BPM 생성을 위한 가변성 의존관계 분석)

  • Moon, Mi-Kyeong
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.791-800
    • /
    • 2009
  • Recently, the business process family model (BPFM), which is new approachfor assuring businessflexibility and enhancing reuse in application development with service oriented architecture (SOA), was proposed. The BPFM is a model which can explicitly represent the variabilities in business process family by using the variability analysis method of software product line. Many business process models (BPM) can be generated automatically through decision and pruning processes from BPFM. At this time, the variabilities tend to have inclusive or exclusive dependencies between them. This affects the decision and pruning processes. So far, little attention has been given to the binding information of variability dependency in the BPFM. In this paper, we propose an approach for analyzing various types of dependency relationships between variabilities and representing the variability and their relationships as a dependency analysis model. Additionally, a method which can trace the variabilities affected by a decision on the dependency analysis model is presented. The case study shows that the proposed approach helps to reduce the number of variability decision and to solve a disagreement of functions in BPM produced by incorrectly deciding the variability.

A Use-case based Component Mining Approach for the Modernization of Legacy Systems (레거시 시스템을 현대화하기 위한 유스케이스 기반의 컴포넌트 추출 방법)

  • Kim, Hyeon-Soo;Chae, Heung-Seok;Kim, Chul-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.601-611
    • /
    • 2005
  • Due to not only proven stability and reliability but a significant investment and years of accumulated -experience and knowledge, legacy systems have supported the core business applications of a number of organizations over many years. While the emergence of Web-based e-business environments requires externalizing core business processes to the Web. This is a competitive advantage in the new economy. Consequently, organizations now need to mine the business value buried in the legacy systems for reuse in new e-business applications. In this paper we suggest a systematic approach to mining components that perform specific business services and that consist of the legacy system's assets to be leveraged on the modem platform. The proposed activities are divided into several tasks. First, use cases that realize the business processes are captured. Secondly, a design model is constructed for each identified use case in order to integrate the use cases with the similar functionalities. Thirdly, we identify component candidates from the design model and then adjust the component candidates by considering common elements among the candidate components. And also business components are divided into three more fine-grained components to deploy them onto J2EE/EJB environments. finally, we define the interfaces of components which provide functionalities of the components as operations.

Design and Implementation of an Execution-Provenance Based Simulation Data Management Framework for Computational Science Engineering Simulation Platform (계산과학공학 플랫폼을 위한 실행-이력 기반의 시뮬레이션 데이터 관리 프레임워크 설계 및 구현)

  • Ma, Jin;Lee, Sik;Cho, Kum-won;Suh, Young-kyoon
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 2018
  • For the past few years, KISTI has been servicing an online simulation execution platform, called EDISON, allowing users to conduct simulations on various scientific applications supplied by diverse computational science and engineering disciplines. Typically, these simulations accompany large-scale computation and accordingly produce a huge volume of output data. One critical issue arising when conducting those simulations on an online platform stems from the fact that a number of users simultaneously submit to the platform their simulation requests (or jobs) with the same (or almost unchanging) input parameters or files, resulting in charging a significant burden on the platform. In other words, the same computing jobs lead to duplicate consumption computing and storage resources at an undesirably fast pace. To overcome excessive resource usage by such identical simulation requests, in this paper we introduce a novel framework, called IceSheet, to efficiently manage simulation data based on execution metadata, that is, provenance. The IceSheet framework captures and stores each provenance associated with a conducted simulation. The collected provenance records are utilized for not only inspecting duplicate simulation requests but also performing search on existing simulation results via an open-source search engine, ElasticSearch. In particular, this paper elaborates on the core components in the IceSheet framework to support the search and reuse on the stored simulation results. We implemented as prototype the proposed framework using the engine in conjunction with the online simulation execution platform. Our evaluation of the framework was performed on the real simulation execution-provenance records collected on the platform. Once the prototyped IceSheet framework fully functions with the platform, users can quickly search for past parameter values entered into desired simulation software and receive existing results on the same input parameter values on the software if any. Therefore, we expect that the proposed framework contributes to eliminating duplicate resource consumption and significantly reducing execution time on the same requests as previously-executed simulations.

S-MADP : Service based Development Process for Mobile Applications of Medium-Large Scale Project (S-MADP : 중대형 프로젝트의 모바일 애플리케이션을 위한 서비스 기반 개발 프로세스)

  • Kang, Tae Deok;Kim, Kyung Baek;Cheng, Ki Ju
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.555-564
    • /
    • 2013
  • Innovative evolution in mobile devices along with recent spread of Tablet PCs and Smart Phones makes a new change not only in individual life but also in enterprise applications. Especially, in the case of medium-large mobile applications for large enterprises which generally takes more than 3 months of development periods, importance and complexity increase significantly. Generally Agile-methodology is used for a development process for the medium-large scale mobile applications, but some issues arise such as high dependency on skilled developers and lack of detail development directives. In this paper, S-MADP (Smart Mobile Application Development Process) is proposed to mitigate these issues. S-MADP is a service oriented development process extending a object-oriented development process, for medium-large scale mobile applications. S-MADP provides detail development directives for each activities during the entire process for defining services as server-based or client-based and providing the way of reuse of services. Also, in order to support various user interfaces, S-MADP provides detail UI development directives. To evaluate the performance of S-MADP, three mobile application development projects were conducted and the results were analyzed. The projects are 'TBS(TB Mobile Service) 3.0' in TB company, mobile app-store in TS company, and mobile groupware in TG group. As a result of the projects, S-MADP accounts for more detailed design information about 'Minimizing the use of resources', 'Service-based designing' and 'User interface optimized for mobile devices' which are needed to be largely considered for mobile application development environment when we compare with existing Agile-methodology. Therefore, it improves the usability, maintainability, efficiency of developed mobile applications. Through field tests, it is observed that S-MADP outperforms about 25% than a Agile-methodology in the aspect of the required man-month for developing a medium-large mobile application.