• Title/Summary/Keyword: Software Medical Devices

Search Result 96, Processing Time 0.024 seconds

A Design and Development of Secure-Coding Check System Based on E-Government Standard Framework for Convergence E-Government Service (융복합 전자정부 서비스를 위한 전자정부 표준프레임워크 기반 시큐어코딩 점검 시스템 설계 및 개발)

  • Kim, Hyungjoo;Kang, Jungho;Kim, Kyounghun;Lee, Jaeseung;Jun, Moonseog
    • Journal of Digital Convergence
    • /
    • v.13 no.3
    • /
    • pp.201-208
    • /
    • 2015
  • Recently computer, smart phone, medical devices, etc has become used in a variety of environments as the application fields of IT products have become diversification. Attack case of abuse of software security vulnerabilities is on the increase as the application fields of software have become diversification. Accordingly, secure coding program is of a varied but history management, updating, API module to be vulnerable to attack. Thus, this paper proposed a materialization of CMS linked system to enable check the vulnerability of the source code to content unit for secure software development, configuration management system that interwork on the transmission module. Implemented an efficient coding system secure way that departmentalized by the function of the program and by analyzing and applying secure coding standards.

A Development of Remote Medical Treatment System for Stroke Recovery using ZigBee-based Wireless Brain Stimulator and Internet (ZigBee 기반의 무선 뇌 자극기와 네트워크를 이용한 원격 뇌졸중 회복 시스템의 개발)

  • Kim, G.H.;Ryu, M.H.;Kim, J.J.;Kim, N.G.;Yang, Y.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.514-517
    • /
    • 2008
  • Ubiquitous healthcare (U-healthcare) system is one of potential applications of embedded system. Conventional U-healthcare systems are used in health monitoring or chronic disease care based on measuring and transmission of various vital signs. However, future U-healthcare system can be of benefit to more people such as stroke patients which have limited activity by providing them proper medical care as well as continuous monitoring. Recently, an electric brain stimulation treatments have been found to be a better way compared to conventional ones and many are interested in using the method toward the treatment of stroke. In this study, we proposed a remote medical treatment system using ZigBee-based wireless electric brain stimulator that can help them to get a treatment without visiting their doctors. The developed remote medical treatment system connects the doctors to the brain stimulator implanted in the patients via the internet and ZigBee communication built in the brain stimulator. Also, the system receive personal information of the connected patients and cumulate the total records of electric stimulation therapy in a database. Doctors can easily access the information for better treatment planning with the help of graphical visualization tools and management software. The developed remote medical treatment system can extend their coverage to outdoors being networked with hand-held devices through ZigBee.

Remote medical Smart healthcare system for IoT-based multi-biometric information measurement (IoT기반 다중 생체정보 측정을 위한 원격 의료 스마트 헬스케어 시스템)

  • Sim, Joung-Yong;Seo, Hyun-Gon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.53-61
    • /
    • 2020
  • Recently, as the uncontact service is activated in earnest due to the Corona 19 virus, the necessity of system development to provide non-face-to-face contact remote medical service has increased. In this study, we propose a smart healthcare system, Rm_She(Remote Medical Smart Healthcare System). Rm_She can collect and manage various vital signs information by connecting various healthcare products that detect bio-signals based on IoT to one application. The health check app (HC_app) is used to connect vital sign measurement devices to a wireless LAN and receive vital sign values from the HC_app. Then, the vital signs are output to the user on the smartphone, and the corresponding information is transmitted to the healthcare management server. The healthcare server receives the measured values and stores them in a database, and the stored measured values are provided as a web service so that medical staff can remotely monitor them in real time.

2023 Survey on User Experience of Artificial Intelligence Software in Radiology by the Korean Society of Radiology

  • Eui Jin Hwang;Ji Eun Park;Kyoung Doo Song;Dong Hyun Yang;Kyung Won Kim;June-Goo Lee;Jung Hyun Yoon;Kyunghwa Han;Dong Hyun Kim;Hwiyoung Kim;Chang Min Park;Radiology Imaging Network of Korea for Clinical Research (RINK-CR)
    • Korean Journal of Radiology
    • /
    • v.25 no.7
    • /
    • pp.613-622
    • /
    • 2024
  • Objective: In Korea, radiology has been positioned towards the early adoption of artificial intelligence-based software as medical devices (AI-SaMDs); however, little is known about the current usage, implementation, and future needs of AI-SaMDs. We surveyed the current trends and expectations for AI-SaMDs among members of the Korean Society of Radiology (KSR). Materials and Methods: An anonymous and voluntary online survey was open to all KSR members between April 17 and May 15, 2023. The survey was focused on the experiences of using AI-SaMDs, patterns of usage, levels of satisfaction, and expectations regarding the use of AI-SaMDs, including the roles of the industry, government, and KSR regarding the clinical use of AI-SaMDs. Results: Among the 370 respondents (response rate: 7.7% [370/4792]; 340 board-certified radiologists; 210 from academic institutions), 60.3% (223/370) had experience using AI-SaMDs. The two most common use-case of AI-SaMDs among the respondents were lesion detection (82.1%, 183/223), lesion diagnosis/classification (55.2%, 123/223), with the target imaging modalities being plain radiography (62.3%, 139/223), CT (42.6%, 95/223), mammography (29.1%, 65/223), and MRI (28.7%, 64/223). Most users were satisfied with AI-SaMDs (67.6% [115/170, for improvement of patient management] to 85.1% [189/222, for performance]). Regarding the expansion of clinical applications, most respondents expressed a preference for AI-SaMDs to assist in detection/diagnosis (77.0%, 285/370) and to perform automated measurement/quantification (63.5%, 235/370). Most respondents indicated that future development of AI-SaMDs should focus on improving practice efficiency (81.9%, 303/370) and quality (71.4%, 264/370). Overall, 91.9% of the respondents (340/370) agreed that there is a need for education or guidelines driven by the KSR regarding the use of AI-SaMDs. Conclusion: The penetration rate of AI-SaMDs in clinical practice and the corresponding satisfaction levels were high among members of the KSR. Most AI-SaMDs have been used for lesion detection, diagnosis, and classification. Most respondents requested KSR-driven education or guidelines on the use of AI-SaMDs.

TinyML Gamma Radiation Classifier

  • Moez Altayeb;Marco Zennaro;Ermanno Pietrosemoli
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.443-451
    • /
    • 2023
  • Machine Learning has introduced many solutions in data science, but its application in IoT faces significant challenges, due to the limitations in memory size and processing capability of constrained devices. In this paper we design an automatic gamma radiation detection and identification embedded system that exploits the power of TinyML in a SiPM micro radiation sensor leveraging the Edge Impulse platform. The model is trained using real gamma source data enhanced by software augmentation algorithms. Tests show high accuracy in real time processing. This design has promising applications in general-purpose radiation detection and identification, nuclear safety, medical diagnosis and it is also amenable for deployment in small satellites.

A Study on the Decision Factors for AI-based SaMD Adoption Using Delphi Surveys and AHP Analysis (델파이 조사와 AHP 분석을 활용한 인공지능 기반 SaMD 도입 의사결정 요인에 관한 연구)

  • Byung-Oh Woo;Jay In Oh
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.111-129
    • /
    • 2023
  • With the diffusion of digital innovation, the adoption of innovative medical technologies based on artificial intelligence is increasing in the medical field. This is driving the launch and adoption of AI-based SaMD(Software as a Medical Device), but there is a lack of research on the factors that influence the adoption of SaMD by medical institutions. The purpose of this study is to identify key factors that influence medical institutions' decisions to adopt AI-based SaMDs, and to analyze the weights and priorities of these factors. For this purpose, we conducted Delphi surveys based on the results of literature studies on technology acceptance models in healthcare industry, medical AI and SaMD, and developed a research model by combining HOTE(Human, Organization, Technology and Environment) framework and HABIO(Holistic Approach {Business, Information, Organizational}) framework. Based on the research model with 5 main criteria and 22 sub-criteria, we conducted an AHP(Analytical Hierarchy Process) analysis among the experts from domestic medical institutions and SaMD providers to empirically analyze SaMD adoption factors. The results of this study showed that the priority of the main criteria for determining the adoption of AI-based SaMD was in the order of technical factors, economic factors, human factors, organizational factors, and environmental factors. The priority of sub-criteria was in the order of reliability, cost reduction, medical staff's acceptance, safety, top management's support, security, and licensing & regulatory levels. Specifically, technical factors such as reliability, safety, and security were found to be the most important factors for SaMD adoption. In addition, the comparisons and analyses of the weights and priorities of each group showed that the weights and priorities of SaMD adoption factors varied by type of institution, type of medical institution, and type of job in the medical institution.

Development of Authentication Service Model Based Context-Awareness for Accessing Patient's Medical Information (환자 의료정보 접근을 위한 상황인식 기반의 인증서비스 모델 개발)

  • Ham, Gyu-Sung;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.99-107
    • /
    • 2021
  • With the recent establishment of a ubiquitous-based medical and healthcare environment, the medical information system for obtaining situation information from various sensors is increasing. In the medical information system environment based on context-awareness, the patient situation can be determined as normal or emergency using situational information. In addition, medical staff can easily access patient information after simple user authentication using ID and Password through applications on smart devices. However, these services of authentication and patient information access are staff-oriented systems and do not fully consider the ubiquitous-based healthcare information system environment. In this paper, we present a authentication service model based context-awareness system for providing situational information-driven authentication services to users who access medical information, and implemented proposed system. The authentication service model based context-awareness system is a service that recognizes patient situations through sensors and the authentication and authorization of medical staff proceed differently according to patient situations. It was implemented using wearables, biometric data measurement modules, camera sensors, etc. to configure various situational information measurement environments. If the patient situation was emergency situation, the medical information server sent an emergency message to the smart device of the medical staff, and the medical staff that received the emergency message tried to authenticate using the application of the smart device to access the patient information. Once all authentication was completed, medical staff will be given access to high-level medical information and can even checked patient medical information that could not be seen under normal situation. The authentication service model based context-awareness system not only fully considered the ubiquitous medical information system environment, but also enhanced patient-centered systematic security and access transparency.

Development of Quality Assurance Software for $PRESAGE^{REU}$ Gel Dosimetry ($PRESAGE^{REU}$ 겔 선량계의 분석 및 정도 관리 도구 개발)

  • Cho, Woong;Lee, Jaegi;Kim, Hyun Suk;Wu, Hong-Gyun
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.233-241
    • /
    • 2014
  • The aim of this study is to develop a new software tool for 3D dose verification using $PRESAGE^{REU}$ Gel dosimeter. The tool included following functions: importing 3D doses from treatment planning systems (TPS), importing 3D optical density (OD), converting ODs to doses, 3D registration between two volumetric data by translational and rotational transformations, and evaluation with 3D gamma index. To acquire correlation between ODs and doses, CT images of a $PRESAGE^{REU}$ Gel with cylindrical shape was acquired, and a volumetric modulated arc therapy (VMAT) plan was designed to give radiation doses from 1 Gy to 6 Gy to six disk-shaped virtual targets along z-axis. After the VMAT plan was delivered to the targets, 3D OD data were reconstructed from 512 projection data from $Vista^{TM}$ optical CT scanner (Modus Medical Devices Inc, Canada) per every 2 hours after irradiation. A curve for converting ODs to doses was derived by comparing TPS dose profile to OD profile along z-axis, and the 3D OD data were converted to the absorbed doses using the curve. Supra-linearity was observed between doses and ODs, and the ODs were decayed about 60% per 24 hours depending on their magnitudes. Measured doses from the $PRESAGE^{REU}$ Gel were well agreed with the TPS doses at central region, but large under-doses were observed at peripheral region at the cylindrical geometry. Gamma passing rate for 3D doses was 70.36% under the gamma criteria of 3% of dose difference and 3 mm of distance to agreement. The low passing rate was resulted from the mismatching of the refractive index between the PRESAGE gel and oil bath in the optical CT scanner. In conclusion, the developed software was useful for 3D dose verification from PRESAGE gel dosimetry, but further improvement of the Gel dosimetry system were required.

The Intelligent Clinical Laboratory as a Tool to Increase Cancer Care Management Productivity

  • Mohammadzadeh, Niloofar;Safdari, Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2935-2937
    • /
    • 2014
  • Studies of the causes of cancer, early detection, prevention or treatment need accurate, comprehensive, and timely cancer data. The clinical laboratory provides important cancer information needed for physicians which influence clinical decisions regarding treatment, diagnosis and patient monitoring. Poor communication between health care providers and clinical laboratory personnel can lead to medical errors and wrong decisions in providing cancer care. Because of the key impact of laboratory information on cancer diagnosis and treatment the quality of the tests, lab reports, and appropriate lab management are very important. A laboratory information management system (LIMS) can have an important role in diagnosis, fast and effective access to cancer data, decrease redundancy and costs, and facilitate the integration and collection of data from different types of instruments and systems. In spite of significant advantages LIMS is limited by factors such as problems in adaption to new instruments that may change existing work processes. Applications of intelligent software simultaneously with existing information systems, in addition to remove these restrictions, have important benefits including adding additional non-laboratory-generated information to the reports, facilitating decision making, and improving quality and productivity of cancer care services. Laboratory systems must have flexibility to change and have the capability to develop and benefit from intelligent devices. Intelligent laboratory information management systems need to benefit from informatics tools and latest technologies like open sources. The aim of this commentary is to survey application, opportunities and necessity of intelligent clinical laboratory as a tool to increase cancer care management productivity.

Study on the Transmission of Medical Information using Bluetooth Technology (블루투스를 이용한 의료정보 신호의 전송에 관한 연구)

  • 엄정규;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.520-523
    • /
    • 2001
  • In this paper, a system that transmits ECG signals which get from hand baggage ECG is implemented by using Bluetooth technology. Bluetooth technology is a close range wireless communication used wireless frequency 2.4GHZ bandwidth. This technology consumes very small power and provides high reliability also self error correction with high speed frequency hopping. Because every device which uses Bluetooth protocol can communicate each other. These can connect between the system implemented and any devices such as mobile telephone with Bluetooth module, notebook, and the personal mobile device. Also, the paper proposes capability of transmission to the sever of hospital through each type of wireless communication device that acquired medical information signals in mobile medical machine. The system consists of hardware parts with Bluetooth module and host part, and software parts with bluetooth protocol stacks. The host precesses a connection with other device and transmits ECG signals with bluetooth frequency hopping sequence.

  • PDF