• Title/Summary/Keyword: Software Defined Networking(SDN)

Search Result 143, Processing Time 0.022 seconds

Load Distribution Method over Multiple Controllers in SDN (SDN에서 컨트롤러 간의 부하 분배 방법)

  • Kyung, Yeunwoong;Hong, Kiwon;Park, Sungho;Park, Jinwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1114-1116
    • /
    • 2015
  • In this paper, we propose a load distribution scheme in SDN utilizing load redirection, enabling incoming messages to be migrated to another controller. Specifically, when the capacity of a controller reaches a threshold, the controller makes incoming packets be migrated to a less-loaded controller to prevent them from being blocked. Analytical result shows that our scheme has lower blocking probability than the conventional scheme.

SD-WLB: An SDN-aided mechanism for web load balancing based on server statistics

  • Soleimanzadeh, Kiarash;Ahmadi, Mahmood;Nassiri, Mohammad
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.197-206
    • /
    • 2019
  • Software-defined networking (SDN) is a modern approach for current computer and data networks. The increase in the number of business websites has resulted in an exponential growth in web traffic. To cope with the increased demands, multiple web servers with a front-end load balancer are widely used by organizations and businesses as a viable solution to improve the performance. In this paper, we propose a load-balancing mechanism for SDN. Our approach allocates web requests to each server according to its response time and the traffic volume of the corresponding switch port. The centralized SDN controller periodically collects this information to maintain an up-to-date view of the load distribution among the servers, and incoming user requests are redirected to the most appropriate server. The simulation results confirm the superiority of our approach compared to several other techniques. Compared to LBBSRT, round robin, and random selection methods, our mechanism improves the average response time by 19.58%, 33.94%, and 57.41%, respectively. Furthermore, the average improvement of throughput in comparison with these algorithms is 16.52%, 29.72%, and 58.27%, respectively.

서비스 체이닝 기술 및 표준화 동향

  • Lee, Seung-Ik;Sin, Myeong-Gi
    • Information and Communications Magazine
    • /
    • v.31 no.9
    • /
    • pp.46-51
    • /
    • 2014
  • 미래지향적 네트워크 및 서비스 인프라의 구축을 위해 네트워크의 개방화와 가상화에 대한 관심이 높아졌다. 이를 지원하는 기술로서 SDN (Software-defined Networking) 및 NFV(Network Function Virtualisation) 기술이 소개되었다. 특히 트래픽에 따라 필요한 네트워크 기능들을 선택적으로 조합 및 실행하여 하나의 네트워크 서비스를 구현하는 서비스 체이닝(Service Chaining 혹은 Service Function Chaining) 기술이 높은 관심을 받고 있다. 이를 통해 컴포넌트 서비스들로 이루어진 경로를 정의함으로써 네트워크 서비스를 적시에 구성 및 능동적으로 제어할 수 있다. 본 고에서는 서비스 체이닝 기술의 기본 개념및 기능에 대해 간략히 소개하고, 주요 기능의 표준화를 담당하는 IETF SFC WG 의 주요 표준화 이슈에 대한 분석 및 향후 전망을 기술한다.

분산형 이동성 관리기법의 표준화 동향

  • Kim, Yeong-Han;Seon, Gyeong-Jae
    • Information and Communications Magazine
    • /
    • v.31 no.9
    • /
    • pp.3-8
    • /
    • 2014
  • 본고에서는 분산형 이동성 관리 기법(Distributed Mobility Management, DMM)에 대한 표준화 연구 동향 및 이를 통한 모바일 네트워크에서의 적용 방안에 대한 연구 동향을 소개한다. 특히, 국제 표준화 단체인 IETF에서 논의되고 있는 분산형 이동성 관리 기법의 방향과 함께 최근 활발하게 논의되는 소프트웨어 정의 네트워크(Software-Defined Networking, SDN) 및 네트워크 기능 가상화(Network Function Virtualization, NFV)기술과의 접목을 통한 연구들을 소개하고 다양한 기술의 접목에 따른 이슈들을 분석한다.

Load Balancing Technique by Dynamic Flow Management in SDN Environment (SDN 환경에서 Dynamic Flow Management에 의한 Load Balancing 기법)

  • Taek-Young, Kim;Tae-Wook, Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1047-1054
    • /
    • 2022
  • With the advent of SDN, a next-generation network technology that separates the hardware and software areas of network equipment and defines the network using open source-based software, it solves the problems of complexity and scalability of the existing network system. It is now possible to configure a custom network according to the requirements. However, it has a structural disadvantage that a load on the network may occur due to a lot of control communication occurring between the controller and the switch, and many studies on network load distribution to effectively solve this have been preceded. In particular, in previous studies of load balancing techniques related to flow tables, many studies were conducted without consideration of flow entries, and as the number of flows increased, the packet processing speed decreased and the load was increased. To this end, we propose a new network load balancing technique that monitors flows in real time and applies dynamic flow management techniques to control the number of flows to an appropriate level while maintaining high packet processing speed.

Mobility Scenarios into Future Wireless Access Network

  • Gilani, Syed Mushhad Mustuzhar;Hong, Tang;Cai, Qiqi;Zhao, Guofeng
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.236-255
    • /
    • 2017
  • The rapid growth of smart devices demands an enhanced throughput for network connection sustainability during mobility. However, traditional wireless network architecture suffers from mobility management issues. In order to resolve the traditional mobility management issues, we propose a novel architecture for future wireless access network based on software-defined network (SDN) by using the advantage of network function virtualization (NFV). In this paper, network selection approach (NSA) has been introduced for mobility management that comprises of acquiring the information of the underlying networking devices through the OpenFlow controller, percepts the current network behavior and later the selection of an appropriate action or network. Furthermore, mobility-related scenarios and use cases to analyze the implementation aspects of the proposed architecture are provided. The simulation results confirm that the proposed scenarios have obtained a seamless mobility with enhanced throughput at minimum packet loss as compared to the existing IEEE 802.11 wireless network.

A DDoS Attack Detection Technique through CNN Model in Software Define Network (소프트웨어-정의 네트워크에서 CNN 모델을 이용한 DDoS 공격 탐지 기술)

  • Ko, Kwang-Man
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.605-610
    • /
    • 2020
  • Software Defined Networking (SDN) is setting the standard for the management of networks due to its scalability, flexibility and functionality to program the network. The Distributed Denial of Service (DDoS) attack is most widely used to attack the SDN controller to bring down the network. Different methodologies have been utilized to detect DDoS attack previously. In this paper, first the dataset is obtained by Kaggle with 84 features, and then according to the rank, the 20 highest rank features are selected using Permutation Importance Algorithm. Then, the datasets are trained and tested with Convolution Neural Network (CNN) classifier model by utilizing deep learning techniques. Our proposed solution has achieved the best results, which will allow the critical systems which need more security to adopt and take full advantage of the SDN paradigm without compromising their security.

A study of SDN/SON-based emergency communications systemprovisioning for nuclear power plant under extreme natural disaster (극한 자연재해 상황 하의 SDN/SON 기반 원자력발전소 비상통신망 구축방안 연구)

  • Choi, Taesang;Yoon, Sangsik;Lee, Junkyung;Cho, Yongsu;Lee, Sangjin
    • KNOM Review
    • /
    • v.22 no.3
    • /
    • pp.31-39
    • /
    • 2019
  • This paper introduces our research results of SDN/SON-based emergeny communications system for nuclear power plant under extreme natural diaster like Fukusima nuclear power plant incident. In such a extreme situation, nuclear power plant operational staffs which do not have technical knowledge of network provisioning and operations have to deploy the emergency network. Thus our proposed system provides capabilities to provision an emergency network autonomically and enable voice and data services. It also describes our PoC system developed based on the proposed core technology and architecture with the results of system verification testing.

Efficient Load Balancing Techniques Based on Packet Types and Real-Time QoS Evaluation in SDN (SDN 환경에서 실시간 패킷 유형과 QoS 평가 기반한 효율적인 Load Balancing 기법)

  • Yoon, Jung-Hyun;Kwon, Tae-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.807-816
    • /
    • 2021
  • With the technology of the 4th industrial revolution, network traffic is increasing due to an increase in supply, an increase in demand, and an increase in the complexity of traffic patterns. SDN, a concept in which H/W and S/W are separated in order to efficiently manage such massive traffic, is attracting attention as a next-generation network. A lot of research is being conducted on the merits of applying flexible policies by avoiding the problem of rigid vendor dependency by using the SDN controller implemented with S/W Opensource. Therefore, in this paper, we propose an efficient load balancing technique by grouping through the packet structure of the network layer using the control layer and infrastructure layer of SDN and analyzing the packet delay and reception rate.

A Mechanism for Configurable Network Service Chaining and Its Implementation

  • Xiong, Gang;Hu, Yuxiang;Lan, Julong;Cheng, Guozhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3701-3727
    • /
    • 2016
  • Recently Service Function Chaining (SFC) is promising to innovate the network service mode in modern networks. However, a feasible implementation of SFC is still difficult due to the need to achieve functional equivalence with traditional modes without sacrificing performance or increasing network complexity. In this paper, we present a configurable network service chaining (CNSC) mechanism to provide services for network traffics in a flexible and optimal way. Firstly, we formulate the problem of network service chaining and design an effective service chain construction framework based on integrating software-defined networking (SDN) with network functions virtualization (NFV). Then, we model the service path computation problem as an integer liner optimization problem and propose an algorithm named SPCM to cooperatively combine service function instances with a network utility maximum policy. In the procedure of SPCM, we achieve the service node mapping by defining a service capacity matrix for substrate nodes, and work out the optimal link mapping policies with segment routing. Finally, the simulation results indicate that the average request acceptance ratio and resources utilization ratio can reach above 85% and 75% by our SPCM algorithm, respectively. Upon the prototype system, it is demonstrated that CNSC outperforms other approaches and can provide flexible and scalable network services.