• Title/Summary/Keyword: Soft-switching boost converter

Search Result 181, Processing Time 0.02 seconds

ZVS Resonant DC-link Inverter using Soft Switching Boost Converter (소프트 스위칭 부스트 컨버터를 사용한 ZVS 공진형 DC-link 인버터)

  • Kim, Young-Ho;Kim, Jae-Hyung;Park, Sang-Hun;Lee, Su-Won;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.137-139
    • /
    • 2008
  • A ZVS resonant DC-link inverter using soft switching boost converter is proposed in this paper. The proposed inverter is capable of switching in zero voltage states during the zero-dc-link-voltage period. As a result, the proposed circuit can reduce the switching loss. Operational principles and detailed analysis are presented. Simulation results are also presented to verify the operation principle.

  • PDF

A New Soft Switching Step-Down/Up Converter with Inherent PFC Performance

  • Jabbari, Masoud;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.835-844
    • /
    • 2009
  • In this paper a new buck-boost type DC-DC converter is presented. Its voltage gain is positive, all active elements operate under soft-switching condition independent of loading, magnetic isolation and self output short-circuit protection exist, and very fast dynamic operation is achievable by a simple bang-bang controller. This converter also exhibits appropriate PFC characteristics since its input current is inherently proportional to the source voltage. When the voltage source is off-line, it is sufficient to add an inductor after the rectifier, then near unity power factor is achievable. All essential guidelines to design the converter as a DC-DC and a PFC regulator are presented. Simulation and experimental results verify the developed theoretical analysis.

A Fully Soft Switched Two Quadrant Bidirectional Soft Switching Converter for Ultra Capacitor Interface Circuits

  • Mirzaei, Amin;Farzanehfard, Hosein;Adib, Ehsan;Jusoh, Awang;Salam, Zainal
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • This paper describes a two quadrant bidirectional soft switching converter for ultra capacitor interface circuits. The total efficiency of the energy storage system in terms of size and cost can be increased by a combination of batteries and ultra capacitors. The required system energy is provided by a battery, while an ultra capacitor is used at high load power pulses. The ultra capacitor voltage changes during charge and discharge modes, therefore an interface circuit is required between the ultra capacitor and the battery. This interface circuit must have good efficiency while providing bidirectional power conversion to capture energy from regenerative braking, downhill driving and the protecting ultra capacitor from immediate discharge. In this paper a fully soft switched two quadrant bidirectional soft switching converter for ultra capacitor interface circuits is introduced and the elements of the converter are reduced considerably. In this paper, zero voltage transient (ZVT) and zero current transient (ZCT) techniques are applied to increase efficiency. The proposed converter acts as a ZCT Buck to charge the ultra capacitor. On the other hand, it acts as a ZVT Boost to discharge the ultra capacitor. A laboratory prototype converter is designed and realized for hybrid vehicle applications. The experimental results presented confirm the theoretical and simulation results.

25 kW, 300 kHz High Step-Up Soft-Switching Converter for Next-Generation Fuel Cell Vehicles (차세대 연료전지 자동차용 25kW, 300kHz 고승압 소프트 스위칭 컨버터)

  • Kim, Sunju;Tran, Hai Ngoc;Kim, Jinyoung;Kieu, Huu-Phuc;Choi, Sewan;Park, Jun-Sung;Yoon, Hye-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.404-410
    • /
    • 2021
  • This paper proposes a high step-up converter with zero-voltage transition (ZVT) cell for fuel cell electric vehicle. The proposed converter applies a ZVT cell to a dual floating output boost converter (DFOBC) so that not only the main switch but also the ZVT switch can achieve full-range soft switching. The current rating of the ZVT switch is 17% of the main switch. The proposed converter has high reliability in that no timing issue occurs. Therefore, online calculation is not required. The minimum turn-on time of the ZVT switch that guarantees soft switching at all loads and input/output voltage is obtained by analysis. In addition, the proposed DFOBC allows the use of a 650 V device even at 800 V output and has the advantage of being able to boost the voltage by 3.5 times with 0.56 duty. Planar coupled inductor with PCB winding was successfully implemented with the converter operated at 300 kHz. The 25 kW prototype achieves peak efficiency of 99% and power density of 63 kW/L.

Improved Full Wave Mode ZVT PWM DC-DC Converters (개선된 전파형 ZVT PWM DC-DC 컨버터)

  • 김태우;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • In this thesis, improved full wave mode ZVT(Zero-Voltage-Transition) PMW DC-DC Converters are presented to maximize the regeneration ratio of resonant energy by only putting an additional diode In series with the auxiliary switch. The operation of the auxiliary switch in a half wave mode makes it possible soft switching operation of all switches including the auxiliary switch whereas it is turned off with hard switching in conventional converter. The increase of the regeneration ratio to resonant energy results in low commutation losses and minimum voltage and current stresses. The operation principles of the improved ZVT PWM DC-DC Converters are theoretically analyzed using the boost converter topology as an example. Both theoretical analysis and experimental results verify the validity of the PWM boost converter topology with the improved full wave mode ZVT PWM converters.

A Soft Switching Bidirectional DC-DC Converter Using ZCT method (ZCT 방식을 이용한 양방향 소프트 스위칭 DC-DC 컨버터)

  • Lee, Il-Ho;Park, Kun-Wook;Jung, Doo-Yong;Kim, Jae-Hyung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.479-480
    • /
    • 2010
  • In this paper, the bi-directional soft switching DC-DC converter using ZCT(Zero Current Transition) method is proposed for using battery application system. This topology is composed of soft switching bi-directional buck/boost converter having the ZCT auxiliary circuit with two switches, two resonant capacitors, one resonant inductor. Therefore, the proposed topology can reduce switching loss. To verify the validity of the proposed topology, theoretical analysis and simulation results are presented.

  • PDF

A Novel Soft Switched Auxiliary Resonant Circuit of a PFC ZVT-PWM Boost Converter for an Integrated Multi-chips Power Module Fabrication (PFC ZVT-PWM 승압형 컨버터에서 통합형 멀티칩 전력 모듈 제조를 위한 개선된 소프트 스위치 보조 공진 회로)

  • Kim, Yong-Wook;Kim, Rae-Young;Soh, Jae-Hwan;Choi, Ki-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.458-465
    • /
    • 2013
  • This paper proposes a novel soft-switched auxiliary resonant circuit to provide a Zero-Voltage-Transition at turn-on for a conventional PWM boost converter in a PFC application. The proposed auxiliary circuit enables a main switch of the boost converter to turn on under a zero voltage switching condition and simultaneously achieves both soft-switched turn-on and turn-off. Moreover, for the purpose of an intelligent multi-chip power module fabrication, the proposed circuit is designed to satisfy several design constraints including space saving, low cost, and easy fabrication. As a result, the circuit is easily realized by a low rated MOSFET and a small inductor. Detail operation and the circuit waveform are theoretically explained and then simulation and experimental results are provided based on a 1.8 kW prototype PFC converter in order to verify the effectiveness of the proposed circuit.

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge resonant snubber in the load-side which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of ZVS-PWM boost chopper-fed DC-DC converter proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory, the temperature performance of IGBT module, the actual power conversion efficiency and the EMI of radiated and conducted emissions. And then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn off mode transition with the aid of an additional lossless clamping diode loop, and reduced the EMI conducted emission in this paper.

A Soft Switching Boost Converter with High Voltage Gain Using a Single Switch (높은 승압비를 가진 공진형 소프트 스위칭 부스트 컨버터)

  • Park, Kun-Wook;Jung, Doo-Yong;Lee, Su-Won;Jung, Yong-Chae;Won, Chung-Yuen;Seo, Kwang-Duck
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.173-175
    • /
    • 2009
  • A dc/dc converter for low voltage of battery application and fuel cell system is required to step up and regulate the low and widely variable voltage. In this paper, we have proposed a soft switching boost converter with high voltage gain using a single switch. Through the theoretical analysis and experimental result, operation modes and characteristics of the proposed topology is verified.

  • PDF

A Family of New Zero-Voltage-Transition PWM Converter with Zero-Current Turnoff Auxiliary Switch

  • Yang, Xu;Wang, Zhaoan
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.74-78
    • /
    • 1998
  • The shortcomings of zero-voltage-transition PWM converter is discussed and a new family of topologies of zero-voltage-transition PWM converter with soft-switched auxiliary switch is introduced. The experiments on a 290W boost converter and a 100W forward converter are carried out to prove the circuit. The efficiency increment of the new circuits are 2-5% comparing to hard switching circuits, and the switching noise is also greatly reduced.

  • PDF