• 제목/요약/키워드: Soft-switching boost converter

검색결과 181건 처리시간 0.021초

동기형 소프트 스위칭 부스트 컨버터 (Synchronous Soft Switching Boost Converter)

  • 김준구;김재형;원충연;정용채
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.187-189
    • /
    • 2008
  • This paper presents the synchronous soft switching boost converter. It is shown that the proposed converter effectively reduces conduction loss by using MOSFET device in place of diode in the conventional boost converter. Also, this soft switching boost converter can reduce switching loss using ZVS method through resonant inductor and capacitor. The proposed synchronous soft switching boost converter is suitable for PV generation system.

  • PDF

태양광발전 시스템의 효율 개선을 위한 Newton Method MPPT제어 및 소프트 스위칭 컨버터 시뮬레이션 (Newton Method MPPT Control and Soft Switching Converter Simulation for Improving the Efficiency of PV System)

  • 장인혁;이강연;최연옥;조금배
    • 전기학회논문지P
    • /
    • 제60권4호
    • /
    • pp.246-252
    • /
    • 2011
  • In this paper proposes the soft-switching boost converter and MPPT control for improving the efficiency of PV system. The proposed converter designed H-bridge auxiliary resonant circuit. By this circuit, all of the switching devices perform the soft switching under the zero voltage and zero current condition. Therefore the periodic switching losses can be decreased at turn on, off. The soft switching boost converter designs for 1.5[kW] solar module of the power conversion. Thus, this soft switching boost converter is simulated by MATLAB simulation using Newton-Method algorithm. As a result, Proposed Soft Switching Converter compared to a typical boost converter switching loss was reduced about 61%. And the overall system efficiency was verified to increase about 3.3%.

Design of Soft Switched Synchronous Boost Converter

  • Dong, Zhiyong;Jeong, DongGyu;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.9-16
    • /
    • 2020
  • In this paper, we designed a soft switched synchronous boost converter, which can perform discharging the battery, is simulated, and experimented designed. The converter operates synchronous operation to increase efficiency of the converter. The converter has very small switching losses because of its soft switching characteristics. In this paper, battery discharger with a switching frequency of 100 kHz have been designed. The designed converter also simulated and experimented to prove the converter's characteristics during synchronous operation. The simulated and experimental results have confirmed that the battery discharger had soft switching characteristics. In addition, the experimental results confirm that the converter has high efficiency characteristics. The efficiency of the circuit exceeds 97%, the efficiency of soft switched synchronous boost converter is at least 6% higher than that of conventional PWM boost converter.

전류불연속 제어의 고효율 부스트 DC-DC 컨버터에 관한 연구 (A Study on High Efficiency Boost DC-DC Converter of Discontinuous Current Mode Control)

  • 곽동걸;김춘삼
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권9호
    • /
    • pp.431-436
    • /
    • 2005
  • This paper studies a novel boost DC-DC converter operated high efficiency for discontinuous current mode (DCM) control. The converter worked in DCM eliminates the complicated circuit control requirement, reduces a number of components, and reduces the used reactive components size. In the general DCM converter, the switching devices are turned-on the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve the zero voltage switching (ZVS) at the switching turn-off, the proposed converter is constructed by using a new loss-less snubber circuit. Soft-switched operation of the proposed boost converter is verified by digital simulation and experimental results. A new boost converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of boost DC-DC converter is high.

High Efficiency Soft-Switching Boost Converter Using a Single Switch

  • Kim, Jun-Ho;Jung, Doo-Yong;Park, Sang-Hoon;Won, Chung-Yuen;Jung, Yong-Chae;Lee, Su-Won
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.929-939
    • /
    • 2009
  • This paper presents a new soft-switching boost converter based on the LC resonance and passive clamping technique without additional active switches. The circuit achieves high efficiency and low voltage stress by adopting a soft switching method using LC resonance. This paper gives a mathematical analysis of each mode and a detailed design procedure of the proposed boost converter. First of all, the operational principles are verified through simulation results. Then, according to the design procedure, we designed and built a 1.5[kW] prototype soft switching boost converter. Through the experimental results, we demonstrated the validity and usefulness of the proposed boost converter.

스위치 스트레스 저감이 가능한 소프트 스위칭 부스트 컨버터 (Soft Switching boost converter for reduction of switch stress)

  • 박승원;김준구;김재형;엄주경;원충연;정용채
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2009년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.155-157
    • /
    • 2009
  • This paper proposed a soft switching boost converter with an auxiliary circuit, and a modified control method for reduction of switch stress. The proposed converter applies an auxiliary circuit, which is added to the conventional boost converter and used to achieve soft switching for both a main switch and an auxiliary switch. The auxiliary circuit consist of a resonant inductor and two capacitors, an auxiliary switch. The main switch is operated ZVS turn-on, turn-off also auxiliary switch is operated ZCS turn-on, ZVS turn-off. The proposed soft switching boost converter has lower switch loss and higher efficiency than conventional soft switching boost converter.

  • PDF

스프트 스위칭 보조 스위치를 가지는 ZVT-PWM 부스트 컨버터 (A High Performance ZVT-PWM Boost Rectifier with Soft Switched Auxiliary Switch)

  • 김윤호;김윤복;정재웅
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.265-268
    • /
    • 1998
  • This paper presents a soft-switching average current control PWM high power factor boost converter. Conventional boost ZVT-PWM converter has a disadvantage of hard-switching for auxiliary switch at turn-off. A soft switched auxiliary switch is proposed to achieve a high performance ZVT-PWM boost rectifier. The simulation and experimental results show that soft switching operation can be maintained for wide line and load range, which in turn improves the converter performance in terms of efficiency, switching noise and circuit reliability.

  • PDF

Soft switched Synchronous Boost Converter for Battery Dischargers

  • Dong, Zhiyong;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.105-113
    • /
    • 2020
  • In this paper, we proposed a soft switched synchronous boost converter, which can perform discharging the battery, is proposed. The proposed converter has low switching loss even at high frequency operation due to its soft switching characteristics. The converter operates in synchronous mode to minimize conduction loss because of changing the rectified diode to MOSFET with a low on resistance. In this reason, the efficiency of the converter can be greatly improved in high frequency. In this paper, the battery discharger with a switching frequency of 100 kHz, has been designed. The designed converter also simulated to prove the converter's characteristics of synchronous operation as well as soft switching operation. The simulation shows that the proposed converter always meets the soft switching conditions of turning on and off switching in the zero voltage and zero current states. Therefore, simulation results have confirmed that the proposed battery discharge had soft switching characteristics. The simulation results have confirmed that the proposed battery discharger had soft switching and synchronous operation characteristics.

다분할 디밍구조를 갖는 LED BLU 구동회로에 관한 연구 (Study on the LED BLU Driving Circuit with a Local-dimming Structure)

  • 박유철;김희준;채균;백주원
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.292-300
    • /
    • 2009
  • This paper presents an LED BLU driving circuit with a local-dimming structure. The efficiency of the proposed LED driver has been improved by parallel driving 8 serial-connected LED arrays. It employed the soft-switching boost converter topology to reduce the switching power loss of the hard switching boost converter. Soft- and hard-switching converters have the same structure except that the free-wheeling diode in the hard-switching converter is replaced with the n-channel MOSFET in the soft-switching one. The proposed boost converter was compared with the hard switching converter. The soft-switching converter reveals superior ripple and efficiency. A smaller inductance can be used for the soft-switching converter contrasting to the hard-switching one. We also studied on an over-voltage protection circuit of the output of the driver at the no load condition. The protection circuit was applied to the proposed driver, and its operation was confirmed by experiment. Using a local-dimming technique, power consumption of LCD BLUs can be reduced as low as possible according to the brightness of its image.

저 손실형 소프트 스위칭 승압형 컨버터 (Low Loss Soft Switching Boost Converter)

  • 박소리;장수진;원충연;정용채
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 추계학술대회 논문집
    • /
    • pp.34-36
    • /
    • 2007
  • A new soft switching boost converter is proposed in this paper. The conventional boost converter generates switching losses at turn on and off. Because of that, the whole system efficiency is reduced. The proposed converter utilizes soft switching method using an auxiliary switch and resonant circuit. Thus, the converter reduces switching losses lower than ones of hard switching method. The proposed soft switching boost converter can be applied to photovoltaic system, power factor correction circuit and so on.

  • PDF