• Title/Summary/Keyword: Soft-Real Time

Search Result 234, Processing Time 0.028 seconds

Non-Causal Filter의 PC-NC에의 응용

  • 장현상;최종률
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1039-1042
    • /
    • 1995
  • In real time application such as motion control, it is hard to find the application of non-causal filtering due to its need for future position data, even though it shows wide usage in off-line digital signal processing. Recently, some of motion control areas such as learning and repetitive control use non-causal filtering technique in their application. these kinds of zero-lag non-causal filter application are very usful not only to reduce the machine vibration, but also to increase control accuracy with comparatively less work. In this paper, genuine method to implement zero-lag non-causal filter in a CNC is introduced. Also the variation of this implementation for the learning operation is suggested to give the NC better control performance for a specific job. By adopting the new NC architecture call Soft-NC, all these implementions are made possible here, and especially large memory requirement which hinders their usage for many years is no longer barrier in their real world application.

  • PDF

Increasing Spatial Resolution of Remotely Sensed Image using HNN Super-resolution Mapping Combined with a Forward Model

  • Minh, Nguyen Quang;Huong, Nguyen Thi Thu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.559-565
    • /
    • 2013
  • Spatial resolution of land covers from remotely sensed images can be increased using super-resolution mapping techniques for soft-classified land cover proportions. A further development of super-resolution mapping technique is downscaling the original remotely sensed image using super-resolution mapping techniques with a forward model. In this paper, the model for increasing spatial resolution of remote sensing multispectral image is tested with real SPOT 5 imagery at 10m spatial resolution for an area in Bac Giang Province, Vietnam in order to evaluate the feasibility of application of this model to the real imagery. The soft-classified land cover proportions obtained using a fuzzy c-means classification are then used as input data for a Hopfield neural network (HNN) to predict the multispectral images at sub-pixel spatial resolution. The 10m SPOT multispectral image was improved to 5m, 3,3m and 2.5m and compared with SPOT Panchromatic image at 2.5m resolution for assessment.Visually, the resulted image is compared with a SPOT 5 panchromatic image acquired at the same time with the multispectral data. The predicted image is apparently sharper than the original coarse spatial resolution image.

Realization of Forward Real-time Decoder using Sliding-Window with decoding length of 6 (복호길이 6인 Sliding-Window를 적용한 순방향 실시간 복호기 구현)

  • Park Ji woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.185-190
    • /
    • 2005
  • In IS-95 and IMT-2000 systems using variable code rates and constraint lengths, this paper limits code rate 1/2 and constraint length 3 and realizes forward real-time decoder using Sliding-Window with decoding length 6 and PVSL(Prototype Vector Selecting Logic), LVQ(Learning Vector Quantization) in Neural Network. In comparison condition to theoretically constrained AWGN channel environment at $S/(N_{0}/2)=1$ I verified the superiority of forward real-time decoder through hard-decision and soft-decision comparison between Viterbi decoder and forward real-time decoder such as BER and Secure Communication and H/W Structure.

An Implementation of SoC FPGA-based Real-time Object Recognition and Tracking System (SoC FPGA 기반 실시간 객체 인식 및 추적 시스템 구현)

  • Kim, Dong-Jin;Ju, Yeon-Jeong;Park, Young-Seak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.6
    • /
    • pp.363-372
    • /
    • 2015
  • Recent some SoC FPGA Releases that integrate ARM processor and FPGA fabric show better performance compared to the ASIC SoC used in typical embedded image processing system. In this study, using the above advantages, we implement a SoC FPGA-based Real-Time Object Recognition and Tracking System. In our system, the video input and output, image preprocessing process, and background subtraction processing were implemented in FPGA logics. And the object recognition and tracking processes were implemented in ARM processor-based programs. Our system provides the processing performance of 5.3 fps for the SVGA video input. This is about 79 times faster processing power than software approach based on the Nios II Soft-core processor, and about 4 times faster than approach based the HPS processor. Consequently, if the object recognition and tracking system takes a design structure combined with the FPGA logic and HPS processor-based processes of recent SoC FPGA Releases, then the real-time processing is possible because the processing speed is improved than the system that be handled only by the software approach.

Sub-Frame Analysis-based Object Detection for Real-Time Video Surveillance

  • Jang, Bum-Suk;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.76-85
    • /
    • 2019
  • We introduce a vision-based object detection method for real-time video surveillance system in low-end edge computing environments. Recently, the accuracy of object detection has been improved due to the performance of approaches based on deep learning algorithm such as Region Convolutional Neural Network(R-CNN) which has two stage for inferencing. On the other hand, one stage detection algorithms such as single-shot detection (SSD) and you only look once (YOLO) have been developed at the expense of some accuracy and can be used for real-time systems. However, high-performance hardware such as General-Purpose computing on Graphics Processing Unit(GPGPU) is required to still achieve excellent object detection performance and speed. To address hardware requirement that is burdensome to low-end edge computing environments, We propose sub-frame analysis method for the object detection. In specific, We divide a whole image frame into smaller ones then inference them on Convolutional Neural Network (CNN) based image detection network, which is much faster than conventional network designed forfull frame image. We reduced its computationalrequirementsignificantly without losing throughput and object detection accuracy with the proposed method.

Real-Time Shadow Generation using Image Warping (이미지 와핑을 이용한 실시간 그림자 생성 기법)

  • Kang, Byung-Kwon;Ihm, In-Sung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.5
    • /
    • pp.245-256
    • /
    • 2002
  • Shadows are important elements in producing a realistic image. Generation of exact shapes and positions of shadows is essential in rendering since it provides users with visual cues on the scene. It is also very important to be able to create soft shadows resulted from area light sources since they increase the visual realism drastically. In spite of their importance. the existing shadow generation algorithms still have some problems in producing realistic shadows in real-time. While image-based rendering techniques can often be effective1y applied to real-time shadow generation, such techniques usually demand so large memory space for storing preprocessed shadow maps. An effective compression method can help in reducing memory requirement, only at the additional decoding costs. In this paper, we propose a new image-barred shadow generation method based on image warping. With this method, it is possible to generate realistic shadows using only small sizes of pre-generated shadow maps, and is easy to extend to soft shadow generation. Our method will be efficiently used for generating realistic scenes in many real-time applications such as 3D games and virtual reality systems.

Overview of the Sonography of the Knee Joint (슬관절 초음파 개론)

  • Kim, Jung-Man
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.1 no.2
    • /
    • pp.94-111
    • /
    • 2008
  • Traditionally the diagnosis and treatment of the diseases of the knee is based on the findings of the x-rays and the MRI. The x-rays provide good information of the changes of the internal structure of the bone. However, there is a limitation in providing information of the soft tissue and the cartilage. The MRI is one of the most expensive diagnostic modalities and it can not give us a dynamic and real time information. The sonography has a role in diagnosis and treatment of the soft tissue disease and surface of the bone. It gives us a real time dynamic information and it is really cheap. In this article the sonographic findings of the normal and pathologic conditions of the knee joint are introduced in relation to the findings of the x-rays and the MRI.

  • PDF

Anomaly Detection System of IoT Platform using Machine Learning (기계학습을 활용한 IoT 플랫폼의 이상감지 시스템)

  • Im, SeonYeol;Choi, HyoKeun;Yi, KyuYull;Lee, TeaHun;Yu, HeonChang
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.1001-1004
    • /
    • 2018
  • As the industry generates a lot of data, it is increasingly dependent on the IoT platform. For this reason, the performance and anomaly detection of IoT platform is becoming an important factor. In this paper, we propose a system model of IoT platform that detects device anomaly without performance issue. The proposed system uses Micro Batch which calculates the data transmission cycle to provide Soft Real-time service. In the industry, it was difficult to collect abnormal data, so the Hotelling's $T^2$ model was applied to the data analysis experiment. And the Hotelling's $T^2$ model successfully detected anomalies.

Optimization-based humanoid robot navigation using monocular camera within indoor environment

  • Han, Young-Joong;Kim, In-Seok;Hong, Young-Dae
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.446-457
    • /
    • 2018
  • Robot navigation allows robot mobility. Therefore, mobility is an area of robotics that has been actively investigated since robots were first developed. In recent years, interest in personal service robots for homes and public facilities has increased. As a result, robot navigation within the home environment, which is an indoor environment, is being actively investigated. However, the problem with conventional navigation algorithms is that they require a large computation time for their building mapping and path planning processes. This problem makes it difficult to cope with an environment that changes in real-time. Therefore, we propose a humanoid robot navigation algorithm consisting of an image processing and optimization algorithm. This algorithm realizes navigation with less computation time than conventional navigation algorithms using map building and path planning processes, and can cope with an environment that changes in real-time.