• Title/Summary/Keyword: Soft-Computing

Search Result 209, Processing Time 0.022 seconds

Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks

  • Asteris, Panagiotis G.;Armaghani, Danial J.;Hatzigeorgiou, George D.;Karayannis, Chris G.;Pilakoutas, Kypros
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.469-488
    • /
    • 2019
  • In this research study, the artificial neural networks approach is used to estimate the ultimate shear capacity of reinforced concrete beams with transverse reinforcement. More specifically, surrogate approaches, such as artificial neural network models, have been examined for predicting the shear capacity of concrete beams, based on experimental test results available in the pertinent literature. The comparison of the predicted values with the corresponding experimental ones, as well as with available formulas from previous research studies or code provisions highlight the ability of artificial neural networks to evaluate the shear capacity of reinforced concrete beams in a trustworthy and effective manner. Furthermore, for the first time, the (quantitative) values of weights for the proposed neural network model, are provided, so that the proposed model can be readily implemented in a spreadsheet and accessible to everyone interested in the procedure of simulation.

Improving the Product Recommendation System based-on Customer Interest for Online Shopping Using Deep Reinforcement Learning

  • Shahbazi, Zeinab;Byun, Yung-Cheol
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.31-35
    • /
    • 2021
  • In recent years, due to COVID-19, the process of shopping has become more restricted and difficult for customers. Based on this aspect, customers are more interested in online shopping to keep the Untact rules and stay safe, similarly ordering their product based on their need and interest with most straightforward and fastest ways. In this paper, the reinforcement learning technique is applied in the product recommendation system to improve the recommendation system quality for better and more related suggestions based on click patterns and users' profile information. The dataset used in this system was taken from an online shopping mall in Jeju island, South Korea. We have compared the proposed method with the recent state-of-the-art and research results, which show that reinforcement learning effectiveness is higher than other approaches.

Using Machine Learning Algorithms for Housing Price Prediction: The Case of Islamabad Housing Data

  • Imran, Imran;Zaman, Umar;Waqar, Muhammad;Zaman, Atif
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.11-23
    • /
    • 2021
  • House price prediction is a significant financial decision for individuals working in the housing market as well as for potential buyers. From investment to buying a house for residence, a person investing in the housing market is interested in the potential gain. This paper presents machine learning algorithms to develop intelligent regressions models for House price prediction. The proposed research methodology consists of four stages, namely Data Collection, Pre Processing the data collected and transforming it to the best format, developing intelligent models using machine learning algorithms, training, testing, and validating the model on house prices of the housing market in the Capital, Islamabad. The data used for model validation and testing is the asking price from online property stores, which provide a reasonable estimate of the city housing market. The prediction model can significantly assist in the prediction of future housing prices in Pakistan. The regression results are encouraging and give promising directions for future prediction work on the collected dataset.

Ultimate axial load of rectangular concrete-filled steel tubes using multiple ANN activation functions

  • Lemonis, Minas E.;Daramara, Angeliki G.;Georgiadou, Alexandra G.;Siorikis, Vassilis G.;Tsavdaridis, Konstantinos Daniel;Asteris, Panagiotis G.
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.459-475
    • /
    • 2022
  • In this paper a model for the prediction of the ultimate axial compressive capacity of square and rectangular Concrete Filled Steel Tubes, based on an Artificial Neural Network modeling procedure is presented. The model is trained and tested using an experimental database, compiled for this reason from the literature that amounts to 1193 specimens, including long, thin-walled and high-strength ones. The proposed model was selected as the optimum from a plethora of alternatives, employing different activation functions in the context of Artificial Neural Network technique. The performance of the developed model was compared against existing methodologies from design codes and from proposals in the literature, employing several performance indices. It was found that the proposed model achieves remarkably improved predictions of the ultimate axial load.

A prediction model for strength and strain of CFRP-confined concrete cylinders using gene expression programming

  • Sema, Alacali
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.377-391
    • /
    • 2022
  • The use of carbon fiber-reinforced polymers (CFRP) has widely increased due to its enhancement in the ultimate strength and ductility of the reinforced concrete (RC) structures. This study presents a prediction model for the axial compressive strength and strain of normal-strength concrete cylinders confined with CFRP. Besides, soft computing approaches have been extensively used to model in many areas of civil engineering applications. Therefore, the genetic expression programming (GEP) models to predict axial compressive strength and strain of CFRP-confined concrete specimens were used in this study. For this purpose, the parameters of 283 CFRP-confined concrete specimens collected from 38 experimental studies in the literature were taken into account as input variables to predict GEP based models. Then, the results of GEP models were statistically compared with those of models proposed by various researchers. The values of R2 for strength and strain of CFRP-confined concrete were obtained as 0.897 and 0.713, respectively. The results of the comparison reveal that the proposed GEP-based models for CFRP-confined concrete have the best efficiency among the existing models and provide the best performance.

Accelerating Soft-Decision Reed-Muller Decoding Using a Graphics Processing Unit

  • Uddin, Md. Sharif;Kim, Cheol Hong;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.4 no.2
    • /
    • pp.369-378
    • /
    • 2014
  • The Reed-Muller code is one of the efficient algorithms for multiple bit error correction, however, its high-computation requirement inherent in the decoding process prohibits its use in practical applications. To solve this problem, this paper proposes a graphics processing unit (GPU)-based parallel error control approach using Reed-Muller R(r, m) coding for real-time wireless communication systems. GPU offers a high-throughput parallel computing platform that can achieve the desired high-performance decoding by exploiting massive parallelism inherent in the algorithm. In addition, we compare the performance of the GPU-based approach with the equivalent sequential approach that runs on the traditional CPU. The experimental results indicate that the proposed GPU-based approach exceedingly outperforms the sequential approach in terms of execution time, yielding over 70× speedup.

Cash flow Forecasting in Construction Industry Using Soft Computing Approach

  • Kumar, V.S.S.;Venugopal, M.;Vikram, B.
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.502-506
    • /
    • 2013
  • The cash flow forecasting is normally done by contractors in construction industry at early stages of the project for contractual decisions. The decision making in such situations involve uncertainty about future cash flows and assessment of working capital requirements gains more importance in projects constrained by cash. The traditional approach to assess the working capital requirements is deterministic in and neglects the uncertainty. This paper presents an alternate approach to assessment of working capital requirements for contractor based on fuzzy set theory by considering the uncertainty and ambiguity involved at payment periods. Statistical methods are used to deal with the uncertainty for working capital curves. Membership functions of the fuzzy sets are developed based on these statistical measures. Advantage of fuzzy peak working capital requirements is demonstrated using peak working capital requirements curves. Fuzzy peak working capital requirements curves are compared with deterministic curves and the results are analyzed. Fuzzy weighted average methodology is proposed for the assessment of peak working capital requirements.

  • PDF

Optimal deep machine learning framework for vibration mitigation of seismically-excited uncertain building structures

  • Afshin Bahrami Rad;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.535-549
    • /
    • 2023
  • Deep extreme learning machine (DELM) and multi-verse optimization algorithms (MVO) are hybridized for designing an optimal and adaptive control framework for uncertain buildings. In this approach, first, a robust model predictive control (RMPC) scheme is developed to handle the problem uncertainty. The optimality and adaptivity of the proposed controller are provided by the optimal determination of the tunning weights of the linear programming (LP) cost function for clustered external loads using the MVO. The final control policy is achieved by collecting the clustered data and training them by DELM. The efficiency of the introduced control scheme is demonstrated by the numerical simulation of a ten-story benchmark building subjected to earthquake excitations. The results represent the capability of the proposed framework compared to robust MPC (RMPC), conventional MPC (CMPC), and conventional DELM algorithms in structural motion control.

A Study on the Problems and Policy Implementation for Open-Source Software Industry in Korea: Soft System Methodology Approach (소프트시스템 모델 방법론을 통해 진단한 국내 공개 SW 산업의 문제점과 정책전략 연구)

  • Kang, Songhee;Shim, Dongnyok;Pack, Pill Ho
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.4
    • /
    • pp.193-208
    • /
    • 2015
  • In knowledge based society, information technology (IT) has been playing a key role in economic growth. In recent years, it is surprisingly notable that the source of value creation moved from hardware to software in IT industry. Especially, among many kinds of software products, the economic potential of open source was realized by many government agencies. Open source means software codes made by voluntary and open participation of worldwide IT developers, and many policies to promote open source activities were implemented for the purpose of fast growth in IT industry. But in many cases, especially in Korea, the policies promoting open source industry and its ecosystem were not considered successful. Therefore, this study provides the practical reasons for the low performance of Korean open source industry and suggests the pragmatic requisites for effective open source policy. For this purpose, this study applies soft system model (SSM) which is frequently used in academy and industry as a methodology for problem-solving and we link the problems with corresponding policy solutions based on SSM. Given concerns which Korean open source faces now, this study suggests needs for the three different kinds of government policies promoting multiple dimensions of industry: research and development (R&D)-side, supply-side, and computing environment-side. The implications suggested by this research will contribute to implement the practical policy solutions to boost open source industry in Korea.

Web contents deformation detection method by BHO (BHO 이용한 웹 컨텐츠 변조 탐지 방법)

  • Mo, Jeong-Hoon;Chung, Man-Hyun;Cho, Jae-Ik;Moon, Jong-Sub
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.655-663
    • /
    • 2011
  • Recently, with improvement of internet service technology, web service has been affecting the environment for computing user. Not only current events, economics, game, entertainment, but also personal financial system is processed by web pages through internet. When data transmission is implemented on the internet, webpage acquire text form code and transform them to DOM information, and then shows processed display to user by web browser. However, those information are not only easily accessed by diversified route, but also easily deformed by intentional purpose. Furthermore, it is also possible to acquire logon information of users and certification information by detouring security mechanism. Therefore, this dissertation propose the method to verify integrity of web contents by using BHO which is one of the Add-On program based on MS Internet Explorer platform which is one of major web browser program designed by MicroSoft to detect any action of webpage deformation.