• Title/Summary/Keyword: Soft soil area

Search Result 196, Processing Time 0.031 seconds

Characteristics of Vacuum Consolidation by Comparing with Surcharge Loading Consolidation (성토재하공법과 비교한 진공압밀공법의 압밀특성 분석)

  • Sim, Dong-Hyun;Lee, Jae-Hwan;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5C
    • /
    • pp.201-208
    • /
    • 2010
  • In this study, the ground settlement was investigated by using monitoring data of the test sites where vacuum consolidation method and surcharge method were applied for improving deep soft soil. The monitoring data are chosen in ${\bigcirc}{\bigcirc}$ area port construction site reclaimed with very soft dredged clay. These data are analyzed to compare the consolidation characteristics between the different loading methods for soil improvement. Through analysis of the loading time, it is shown that the ground settlement reaches its allowable value under vacuum consolidation loading by about 45% faster than that of the surcharge loading consolidation. This could be explained that vacuum consolidation method makes the isotropic consolidation condition so that the time for reaching a certain final preloading without soil failure can be shortened.

Prediction of Optimum Capacity for Tractor Drawn Liquid Manure Tank Spreader by Computer Simulation (컴퓨터 모의시험에 의한 트랙터견인형 액상가축분뇨 살포기의 적정용량 예측)

  • 이규승
    • Journal of Animal Environmental Science
    • /
    • v.8 no.3
    • /
    • pp.135-144
    • /
    • 2002
  • A computer simulation was carried out to investigate the optimum capacity of liquid manure tank spreader which is used as a tractor attachment. Soil physical properties, such as soil moisture content, bulk density, soil hardness and soil types were measured in the 10 major rice production area for computer simulation. Mathematical model which include soil physical properties and vehicle factor was used for computer simulation. Most of the soil type of the investigated area was sandy clay loam. Soil moisture content ranged between 30 and 40% mostly. Soil bulk density was in the range of 1,500 to 1,700 kg/$m^3$. Soil hardness ranged between 1 to 18 $cm^2$. Soil hardness incorporate the effects of many soil physical properties such as soil moisture content, soil type and soil bulk density, and so the range of soil hardness is greater than any other physical properties. The capacity of liquid manure tank spreader was above 3,000 kg$_{f}$ for the most of the investigated areas, and mostly in the range of 4,000 to 6,000 $kg_f$ depending upon the slip. But for the soft soil area such as Andong and Asan, the tractor itself has mobility problem and shows no pulling force for some places. For this area, the capacity of liquid manure tank spreader ranged between 1,000 and 2,000 $kg_f$ mostly, so the capacity of liquid manure tank spreader should be designed as a small capacity trailer compared to the other area.mpared to the other area.

  • PDF

Soil Treatment by Eco-Friendly Consoildation Soil (친환경 무기계 토양개량 고화제에 의한 해양오염토 처리)

  • Han, Doo Hee
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • Paper sludge ash, blast furnace slag, fine powder quicklime, anhydrous gypsum, and fly ash as the main ingredients were prepared to suit the salty soils of marine soils. The solidification component is a kind of recycled ceramic, and CaO plays an important role in solidification. The neutralization time after solidification was about 2 weeks, and the compressive strength was about 12N/mm2 in the mortar test after one week incubation with standard yarn. This is about 14 times stronger than the solidifying agent used in the metropolitan area. As a result of applying plate load test to saltous marine soils, we obtained the yield load that can pass the large scale even after 5 days. In the uniaxial compressive strength test, shear strength of about 300 kPa was obtained after 5 days. It will be useful for supplementing the soft ground in the area where marine reclamation is much like the Incheon area.

Application of Ultrasonic Energy to Fast Consolidation of Soft Clays (연약지만 압밀 촉진을 위한 초음파 에너지의 활용)

  • Park, Ji-Ho;Hwang, Jung-Ha;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1039-1042
    • /
    • 2008
  • Dredged fills have been widely used to secure a land for the engineering activities. Before the useful application of the area, the soils should be consolidated to acquire the aquate shear strength. Several research projects have attempted to develop a method fur accelerating the consolidation of soft clay. Our study examined the effect of ultrasonic energy on the consolidation of soft clay, Tests were conducted using specially designed and fabricated equipment that was capable of directly applying ultrasonic energy to soil samples during consolidation tests. The specimens were prepared from slurry using a centrifuge facility, and tests were conducted at various levels of ultrasonic power and treatment time. The study showed that ultrasonic energy had a considerable effect on consolidation time, suggesting that ultrasound can be used to reduce the consolidation time of soft clay.

Case Studies on the Field Application of Miniature CPT's in South Korea (소형콘관입시험(Miniature CPT)의 국내현장적용 사례분석)

  • Yoon, Sung-Soo;Hwang, Dae-Jin;Kim, Jun-Ou;Ji, Wan-Goo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.269-281
    • /
    • 2010
  • The cone penetration test(CPT) has been increasingly used for in situ site characterization. However, the use of CPT is often limited due to specific site conditions depending on the cone size, geometry, and capacity of the CPT system used. In South Korea, it has generally been considered that the CPT could be satisfactorily performed only in soft soils. Louisiana State University/ Louisiana Transportation Research Center has implemented a field-rugged continuous intrusion miniature cone penetration test (CIMCPT) system since the 1990s. The miniature cone penetrometer of the CIMCPT system has a cross-sectional cone area of $2cm^2$ allowing finer soil profiles compared to the standard $10cm^2$. The reduced cross-sectional area also enables a system capacity reduction leading to cost saving and ease in maintenance. In addition, the continuous intrusion mechanism allows fast and economic site investigations. Samsung C&T Corporation has recently implemented a similar CIMCPT system. In this study, case studies on the field application of Samsung CIMCPT system for the last 2 years are presented to illustrate its performance investigation and its usefulness and limitation. Results of the case studies show that the CIMCPT system can be applied to soils with cone tip resistance($q_c$) values up to about 30MPa and allows a reliable and useful way to characterize soft soils. The results also show that the rod buckling limits the investigation depth by the system and the large contact pressure of the CIMCPT truck prevents the use of the system at sites with soft surface soils. According to the results of the case studies, the Samsung CIMCPT system has been being upgraded with a miniature cone with a longer rod, a crawler-type transportation system, a pre-boring system, and so on.

  • PDF

The Optimum Mixture Condition for Stabilization of Songdo Silty Clay (송도 지역 실트질 점성토 고화처리를 위한 최적 배합 조건)

  • Kim, Jun-Young;Jang, Eui-Ryong;Chung, Choong-Ki;Jang, Soon-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.5-15
    • /
    • 2011
  • Recent increase of large scale construction near costal area has also increased the application of soft ground treatment. As a result, solidification with cement and lime which increases stability and durability of soils, is frequently used for surface layer stabilization in soft ground site. While stabilization of very soft clay with high plasticity and compressibility has widely been studied, studies on silty clay with low plasticity and compressibility are relatively rare. In this study, after stabilizing low plasticity silty clay of Songdo area with cement and lime under various water contents, mixing ratio, and curing time, uniaxial compression test and plate load test were performed. Strength properties from both tests were considerably consistent. And trackability of construction equipment on the treated surface layer of dredged land was estimated. Finally, optimum mixing condition for Songdo silty clay was proposed.

Analysis of Sand Compaction Piles Under Flexible Surcharge Loading (연성하중을 받는 모래다짐말뚝(SCP)의 거동분석)

  • 홍의준;김재권;정상섬;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.223-233
    • /
    • 2003
  • Sand compaction pile (SCP) is one of the ground improvement techniques which are being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model tests and 3-D finite element analyses were performed to investigate the interaction between sand compaction piles and surrounding soft soils. Based on the results obtained, as the area replacement ratio increases, the stress concentration ratio increases at the pile point, the settlement decreases, and the relative displacement between column and soil also decreases. It is also found that numerical study is illustrated by good comparison with model test results, and the numerical analysis revealed slip effects which could not be specifically identified in the model tests.

The Behavior of Rammed Aggregate Piers (RAP) in Soft Ground (I) (연악지반의 쇄석다짐말뚝에 대한 거동 분석 (I))

  • Bae, Kyung-Tae;Lee, Chong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.169-183
    • /
    • 2007
  • Numerical analysis was performed to investigate the behavior of rammed aggregate piers (RAP) in soft ground with various interface conditions, area replacement ratio, aspect ratio and surcharge loads of pile and soil. And field modulus load test was carried out to predict the input parameters. Field prototype (unit cell) tests are in progress to compare the result of numerical analysis. Also a modified load transfer equation of RAP on soft foundation was proposed. According to the results, the behavior of RAP depended on such as interface conditions, settlement characteristics (free strain) and stress concentration ratio. On the other hand, maximun stress concentration ratio increased as area replacement ratio and aspect ratio increased, and it was remarkably affected by surcharge loads.

Blade Type Field Vs Probe for Evaluation of Soft Soils (연약지반 평가를 위한 블레이드 타입 현장 전단파 속도 프로브)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Eom, Yong-Hun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.33-42
    • /
    • 2007
  • The assessment of shear wave velocity($V_s$) in soft soils is extremely difficult due to the soil disturbances during sampling and field access. After a ring type field $V_s$ probe(FVP) has been developed, it has been applied at the southern coastal area of the Korean peninsular. This study presents the upgraded FVP "blade type FVP", which minimizes soil disturbance during penetration. Design concerns of the blade type FVP include the tip shape, soil disturbance, transducers, protection of the cables, and the electromagnetic coupling between transducers and cables. The cross-talking between cables is removed by grouping and extra grounding of the cables. The shear wave velocity of the FVP is simply calculated by using the travel distance and the first arrival time. The large calibration chamber tests are carried out to investigate the disturbance effect due to the penetration of FVP blade and the validity of the shear waves measured by the FVP. The blade type FVP is tested in soils up to 30m in depth. The shear wave velocity is measured every 10cm. This study suggests that the upgraded blade type FVP may be an effective device for measuring the shear wave velocity with minimized soil disturbance in the field.

Case study on soil conditioning for EPB tunneling and troubleshooting in various grounds (다양한 지반에서의 EPB TBM 첨가제 사용 및 문제 해결 사례 연구)

  • Han-byul Kang;Sung-wook Kang;Jae-hoon Jung;Jae-won Lee;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.65-85
    • /
    • 2023
  • The use of TBM (Tunnel boring machine) has increased worldwide due to its performance together with the benefit of being safely and environmentally friendly compared to conventional tunneling. In particular, EPB (Earth Pressure Balanced) TBM is widely used because it can be applied to various grounds compared to Open TBM. Also EPB TBM has a simple mechanical structure and advantages in cost, requires less ground area than Slurry TBM. EPB TBM has advantages in soft ground, and more importantly, can extend its applicability by use of appropriate soil conditioning, which improves mechanical and hydrological properties of excavated soil and increases the excavation performance of EPB TBM. Various studies suggested the proper mixing ratio and injection ratio, but almost they are limited to laboratory test under atmospheric pressure such as slump test. Actual field conditions may differ depending on the ground and mechanical condition. In this study, first the amount of used soil conditioning used in the field with various grounds from hard rock to soft ground was estimated through laboratory tests and compared with the estimate in design stage. And also it was compared with the amount used during actual excavation. In addition, experience of soil conditioning for the problems of cutter head clogging and groundwater inrush that occurred during excavation is discussed. Finally, lesson learned for the use of soil conditioning in difficult ground condition such as mixed ground are reviewed.