• Title/Summary/Keyword: Soft segment

Search Result 141, Processing Time 0.028 seconds

LONG-TERM RESULTS OF VERTICAL HEIGHT AUGMENTATION GENIOPLASTY USING AUTOGENOUS ILIAC BONE GRAFT (장골 이식을 이용한 수직 증강 이부 성형술 후의 장기간 결과)

  • Kim, Gi-Jung;Park, Hyung-Sik;Yoon, Kyu-Sik;Lee, Eui-Wung;Jung, Young-Soo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.6
    • /
    • pp.509-514
    • /
    • 2005
  • Purpose: In order to clarify the clinical utility of the vertical height augmentation (VHA) genioplasty using autogenous iliac bone graft (IBG), this study examined the postsurgical changes in hard and soft tissues of the chin and the stability of the grafted bone. Patients and Methods: Twenty-three patients who had undergone VHA genioplasty using autogenous IBG were evaluated radiographically and clinically. A comparison study of the changes in hard to soft tissues after surgery in all 23 patients was performed with preoperative, 1-month, 3-months, 6-months, and/or 1-year postoperative lateral cephalograms by tracing. Stability, bone healing, and complication of the grafted bone was evaluated by follow-up roentgenograms and clinical observation. Results: Between the preoperative and 6-month postoperative tracings, an average vertical augmentation of the osseous segment was 4.2 mm at menton and that of the soft tissue menton was 4.0 mm. There was a high predictability of 1: 0.94 between the amounts of hard versus soft tissue changes with surgery in the vertical plane. The position of the genial bone segment was stable immediately after surgery and soft tissue was not changed significantly from 1 month to 1 year after operation. Clinical and radiological follow-up results of the iliac bone graft showed normal bony union and were generally stable. Conclusions: VHA genioplasty using IBG is a reliable method for predicting hard and soft tissue changes and for maintaining postoperative soft tissue of the chin after surgery.

Characterization and Mechanical Properties of Prepolymer and Polyurethane Block Copolymer with a Shape Memory Effect

  • Cho, Jae-Whan;Jung, Yong-Chae;Lee, Sun-Hwa;Chun, Byoung-Chul;Chung, Yong-Chan
    • Fibers and Polymers
    • /
    • v.4 no.3
    • /
    • pp.114-118
    • /
    • 2003
  • The prepolymer and the final polyurethane (PU) block copolymer were synthesized by reacting 4,4-methylene bis(phenylisocyanate) with poly(tetramethylene glycol) and the prepolymer with 1,4-butanediol as a chain extender, respectively, to investigate the relation between phase separation and it's resulting properties. According to FT-IR data, the phase separation of hard and soft segments in the prepolymer and the PU block copolymer grew bigger by increasing the hard segment content, and the PU showed more dominant phase separation than the prepolymer. The heat of fusion due to soft segments decreased in both the prepolymer and the PU by increasing the hard segment content, whereas the heat of fusion due to hard segments increased in the PU did not appear in the prepolymers. The breaking stress and modulus of the prepolymer increased by increasing the hard segment content, and the elongation at break decreased gradually, and the PU showed the highest breaking stress and modulus at 58% hard segment content. However, the best shape recovery of the PU was obtained at 47% hard segment content due to the existence of proper interaction among the hard segments for shape memory effect. Consequently, the mechanical properties and shape memory effect of the PU were influenced by the degree of phase separation, depending on the incorporation of chain extender as well as the hard segment content.

Studies on the Morphology and Thermal Properties of the Polyurethane Synthesized from 4,4'-Diphenylmethane Diisocyanate (MDI) and Polyester Polyol (4,4'-Diphenylmethane Diisocyanate (MDI)와 폴리에스테르 폴리올로부터 합성된 폴리우레탄의 모폴로지와 열적 성질에 관한 연구)

  • Jung Hyun Chul;Kang Sung Joong;Kim Woo Nyon;Kim Sang Bum;Lee Yeong Beom;Hong Seong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.59-65
    • /
    • 1998
  • Morphology and thermal properties of polyurethane synthesized from 4,4'-diphenylmethane diisocyanate (MDI), polyester polyol, and 1,4-butane diol are investigated using fourier transform infrared spectroscopy (FT-IR), differential scanning calorimeter (DSC), and dynamic mechanical thermal analysis (DMTA). From the FT-IR study, it is found that the stretching peaks of hydrogen bonded N-H and C=O are shifted to the low frequencies with the increase of hard segment content of the polyurethanes. The shift of the stretching peaks of hydrogen bonded N-H and C=O indicates that the degree of hydrogen bonding is increased. From the DSC study, it appears that the glass transition temperature ($T_g$) of the polyurethanes is increased with the increase of the hard segment content. Also, it is found that the polyurethanes investigated in this study have the homogeneous network structure due to the high functionality of the MDI. From the DMTA study, transition of the soft segment was not found. Therefore it is concluded that the polyurethanes investigated in this study have the one-phase morphology which is consistent with the DSC results.

  • PDF

A Study on the Physical Properties and Adhesion Characteristics of Polyurethane Resin (폴리우레탄 수지의 물성 및 접착특성에 관한 연구)

  • Kim, Young-Joon;Chang, Ki-Young;Kim, Gu-Ni;Chun, Yong-Chul;Yoo, Chong-Sun;Park, Sang-Wook
    • Elastomers and Composites
    • /
    • v.31 no.2
    • /
    • pp.104-110
    • /
    • 1996
  • The polyurethane was synthesized by the reaction of polycaprolactone diol(Mw 2000), 4,4'-diphenylmethane diisocyanate and 1,4-butanediol as the chain extender. Also, the modified polyurethane polymers based on liquid polybutadiene as a part of soft segment and dimethylolpropionic acid as a chain extender, giving polyurethane with various polarity, were synthesized. The thermal, mechanical, adhesion properties and water contact angles of the polyurethanes were examined. From the result of the water contact angle, the polarity of the acid modified PU containing 6% acid content was unchanged but mechanical and adhesion properties were improved. The water contact angles on polybutadiene modified PU films were increased with increasing polybutadiene content. The mechanical properties of the polybutadiene modified PU were higher than that of acid modified PU. However, the mechanical properties were reduced as polybutadiene content increased. The result is presumably due to phase separation between hard segment and soft segment. The peel strength of the polyurethane introduced with 5wt% polybutadiene was improved about 150% than that of unmodified PU. The same as the mechanical properties, the more polybutadiene was introduced, the lower peel strength was obtained.

  • PDF

Analysis of the Characteristics of Polyurethane Synthesis Using Quartz Crystal Analyzer (수정진동자 분석기를 이용한 폴리우레탄 합성반응의 특성분석)

  • Cho, Hong-Sik;Park, Jin-Young;Han, Dae-Sang;Park, Ji-Sun;Lee, Hang-Ja;Kim, Kwang;Chang, Sang-Mok
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.28-35
    • /
    • 2000
  • In this study, we investigated the characteristics of polyurethane synthesis by simultaneously measuring resonant frequency and resonant resistance with a quartz crystal analyzer. The rapid decrease of resonant frequency was appeared because automatic catalytic reaction was caused by the polyurethane formed in initial stage of polyurethane synthesis. In prepolymer(PP) synthesis, the resonant frequency was slowly stabilized after a rapid decrease at a certain point of time. But in segmented polyurethane synthesis in which chain-extender was involved, the resonant frequency increased again after a rapid decrease at a certain point of time. It was considered that this tendency took place because the chain-extender, 1,4-butandiol, caused a soft segment to change to a hard segment. The resonant resistance was used in the analysis of mechanism. From the results, the characteristics of polyurethane synthesis could be analyzed on-line using a quartz crystal analyzer, and the synthesis mechanism could also be interpreted.

  • PDF

Solid-state NMR Studies of Miscibility and Morphology in Blends of Bisphenol-A type Polycarbonate and Poly (ester-ether) Elastomer

  • Kim, Yongae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.19-28
    • /
    • 2001
  • Miscibility and morphology in blends of bisphenol-A type polycarbonate and poly (ester-ether) elastomer with different compositions are studied by solid-state NMR spectroscopy. $^{13}$ C Solid-state NMR of CP/MAS/TOSS/DD, CP/MAS/DD, inversion recovery CP/MAS/DD, and 2D rotor driven spin diffusion techniques are used to identify the miscibility, morphology, and transesterification in blends. The blends of PC /BT elastomer with 15% to 42% of soft segment seem to be single phase miscible mixing and those of PC/PBT and PC/PBT elastomer with 62% of soft segment are cocontinuous two phase immiscible mixing. No significant transesterification reactions are observed in blends with different compositions.

  • PDF

Miscibility of TPU(PCL diol)/PCL Blend and its Effect on PCL Crystallinity

  • Ajili Shadi Hassan;Ebrahimi Nadereh Golshan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.371-372
    • /
    • 2006
  • Poly(${\varepsilon}-caprolactone$) (PCL) is a highly crystalline polymer that is miscible with several amorphous polymers including chlorinated polyether, poly(vinylchloride), poly(hydroxyether) and Bisphenol A polycarbonate. The crystallization behavior of miscible blend of amorphous/crystalline polymers has widely been studied. Generally a depression of the crystallization ability has been found with addition of amorphous component because of the reduction of chain mobility, the change of free energy of nucleation as a result of a specific interaction, and so on [1]. In this work, for the first time, the blend of PCL and copolymer of polyurethane containing polycaprolactone as a soft segment is considered. The structural similarity of TPU soft segment with PCL affects on formation of the miscible component and crystallization behavior of PCL in the blend. This has been studied using differential scanning calorimetry (DSC) and Wide-angle X-ray Scattering (WAXS).

  • PDF

Emulsion Blends of Polyurethane Ionomers from Ester and Ether Type Polyols (Ester 및 Ether형 Polyurethane Ionomer의 Emulsion 블랜드)

  • Kim, Sang-June;Kim, Byung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.614-619
    • /
    • 1992
  • Two types of polyurethane(PU) ionomer dispersion having different type of soft segment, viz. Poly (tetramethylene adipate) glycol(PTAd), and polypropylene glycol(PPG) were emulsion blended. Viscosity of emulsion blend, mechanical, and surface properties of the emulsion cast films were determined as a function of blend composition. Mechanical properties showed a large scatter of data or negative deviation from the additivity rule, and this was attributed to the incompatibility of soft segments. Contact angle measurement indicated that air facing surface of emulsion cast film contained more of PPG PU, due probably to its smaller particle diameter compared to PTAd PU.

  • PDF

Effects of the Polyurethane Contents and Blend Time on the Crystalline Structure and Mechanical Properties of Nylon 6/PU Blend (폴리우레탄 함량과 블렌드 시간이 Nylon 6/pu 블렌드의 결정구조 및 기계적 특성에 미치는 영향)

  • 윤철수;지동선
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.474-477
    • /
    • 2002
  • 열가소성 폴리우레탄(PU)은 우수한 탄성을 갖는 유용한 고분자중의 하나로 섬유나 플라스틱에 널리 사용되고 있다. PU는 상온보다 높은 유리전이 온도(T$_{g}$)를 갖는 유리상의 hard segment와 상온보다 낮은 유리전이 온도(T$_{g}$)를 갖는 고무상의 soft segment로 구성되어 있으며 열역학적으론 비상용성으로 인하여 미세 상분리 구조를 가지게 되어 고무보다 높은 탄성률과 우수한 인장 회복거동을 갖게 된다[1-3]. (중략)

  • PDF

Preparation and Properties of Segmented Polyurethane Elastomers with Two Different Soft Segments

  • Lee, Tae-Jung;Huh, Jae-Ho;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.1-4
    • /
    • 1998
  • Segmented Polyurethanes Elastomers are a class of polymers having interesting properties which arise from their unique phase-separated structures resulting from the thermodynamic incompatibility of the ingredients[1]. Segmented polyurethane Elastomer generally consists of a segment derived from a polymeric diol and a hard segment from a diisocyanate and a low molecular weight diol(chain extender).(omitted)

  • PDF