• Title/Summary/Keyword: Soft Switching

Search Result 775, Processing Time 0.036 seconds

Three-Phase Current Source Type ZVS-PWM Controlled PFC Rectifier with Single Active Auxiliary Resonant Snubber and Its Feasible Evaluations

  • Masayoshi Yamamoto;Shinji Sato;Tarek Ahmed;Eiji Hiraki;Lee, Hyun-Woo;Mutsuo Nakaoka
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.127-133
    • /
    • 2004
  • This paper presents a prototype of three-phase current source zero voltage soft-switching PWM controlled PFC rectifier with Single Active Auxiliary Resonant Commutated Snubber (ARCS) circuit topology. The proposed three-phase PFC rectifier with sinewave current shaping and unity power factor scheme can operate under a condition of Zero Voltage Soft Switching (ZVS) in the main three phase rectifier circuit and zero current soft switching (ZCS) in auxiliary snubber circuits. The operating principle and steady-state performances of the proposed three-phase current source soft-switching PWM controlled PFC rectifier controlled by the DSP control implementation are evaluated and discussed on the basis of the experimental results of this active rectifier setup.

Operating Characteristics Analysis Of Bi-Directional DC/DC Converter using PFM control with high efficiency at whole load range (전 부하 영역에서 고효율을 가지는 PFM 제어를 이용한 양방향 DC/DC 컨버터의 동작특성 분석)

  • Kim, Ji-Hwan;Hwang, Sun-Hee;Ryu, Dong-Gyun;Jung, Doo-Yong;Jung, Yong-Chae;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.29-30
    • /
    • 2012
  • In this paper, a performance of bi-directional DC/DC converter using PFM control at whole load range is analyzed. A bi-directional DC/DC converter using PFM control in this paper can be soft switching operation with LC series resonant circuit. It's difficult to expect a high efficiency at whole load range in general resonant converter because of limitation of soft switching area. Therefore converter used in this paper has a variable frequency PFM control to overcome a limitation of soft switching area and it makes a high efficiency at whole load range by implementing a soft switching at light load area of restricted soft switching. The high efficiency at whole load range is verified by simulation and experimental result.

  • PDF

Multi-Phase Interleaved ZVT Boost Converter With a Single Soft-Switching Cell (단일 소프트 스위칭 셀을 가진 다상 Interleaved ZVT Boost 컨버터)

  • Lee, Joo-Seung;Hwang, Yun-Seong;Kang, Sung-Hyun;Kwon, Man-Jae;Jang, Eunsu;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.247-255
    • /
    • 2022
  • This paper proposes a multiphase interleaved zero-voltage-transition boost converter with a single soft-switching cell for high-voltage DC-DC converter (HDC) of fuel cell systems. The proposed single soft-switching cell structure can reduce the system volume by minimizing the passive and active elements added even in the multiphase-interleaved structure. To analyze the feasibility of the proposed structure, this paper mathematically analyzes the operation modes of the converter with the proposed single soft-switching cell structure and presents guidelines for design and considerations. In addition, the feasibility of the 210[kW] HDC was confirmed through PSIM simulation, and the system volume reduction of up to 10.48% was confirmed as a result of the 5[kW] HDC test-bed experiment considering the fuel cell system. Through this, the validity of the proposed structure was verified.

High Frequency Soft Switching Forward DC/DC Converter (고주파 소프트 스위칭 Forward DC/DC 컨버터)

  • 김은수;최해영;조기연;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.409-412
    • /
    • 1998
  • In this paper, an improved soft switching forward dc/dc converter is proposed. The proposed converter is constructed by using non-dissipate snubbers in parallel with the main switch and output diode of the conventional forward converter. Due to use of the non-dissipative snubbers, the proposed converter achieves zero-voltage switching for all switching devices and output diodes without switching losses. The complete operating principles and experimental results will be presented.

  • PDF

High-Efficiency Ballast for HID Lamp using Soft-Switching Multi-Level Inverter

  • Lee, Baek-Haeng;Kim, Hee-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.373-378
    • /
    • 2007
  • Soft switching was applied to the multi-level inverter to enhance the performance of the high-intensity discharge (HID) ballast used in vehicle headlights. The electrical properties were investigated and the available modeling of ballast in steady state was calculated using mathematical methods. The result was used in analyzing the power characteristics. The modeling was confirmed by the experiment.

An Improved Soft Switching Two-transistor Forward Converter (개선된 소프트 스위칭 Two-transistor forward converter)

  • Kim, Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.137-140
    • /
    • 2000
  • This paper proposes an improved soft switching two-transistor forward converter which uses a novel lossless snubber circuit to effectively control the turn-off dv/dt rate of the main transistors. In the proposed soft switching implementation the turn-off voltage traces across the main two transistors are almost the same contributing to reduce the total capacitive turn-on loss and the snubber current is divided into the two transistors resulting in distributed thermal stresses

  • PDF

A Novel Soft-Switching Two-Switch Flyback Converter with a Wide Operating Range and Regenerative Clamping

  • Kim, Marn-Go;Jung, Young-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.772-780
    • /
    • 2009
  • A novel soft-switching two-switch flyback converter is proposed in this paper. This converter is composed of two active power switches, a flyback transformer, a blocking diode, and two passive regenerative clamping circuits. The proposed converter has the advantages of a low cost circuit configuration, a simple control scheme, a high efficiency, and a wide operating range. The circuit topology, analysis, design considerations, and experimental results of the new flyback converter are presented.

High Efficiency Isolated DC/DC Converter Using Soft Switching (소프트 스위칭을 이용한 절연형 고효율 DC/DC 컨버터)

  • Park, Sung-Jun;Song, Sung-Geun;Heo, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.907_908
    • /
    • 2009
  • 현재 학계에서는 Soft Switching 방식에 대한 다양한 토폴로지 연구가 활발히 이루어지고 있다. 본 논문에서는 Soft Switching을 이용한 새로운 절연형 DC/DC 컨버터 토폴로지를 제안하였다. 제안된 토폴로지는 입력전압의 거의 모든 영역에 대하여 97% 이상의 효율을 가짐을 검증하였다.

  • PDF

A soft switching ZVT boost converter using auxiliary resonant circuit (보조 공진 회로를 이용한 소프트 스위칭 ZVT 부스트 컨버터)

  • Lee, Hee-Jun;Kim, Jun-Gu;Jun, Bum-Su;Jung, Yong-Chae;Won, Chun-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.477-478
    • /
    • 2010
  • In this paper, soft switching boost converter with ZVT(Zero Voltage Transition) method was proposed. Each switch of the proposed ZVT converter is operated under soft switching condition through using auxiliary resonant circuit. Also, the ZVT converter is verified through operation modes analysis and simulation.

  • PDF

Two-transistor 포워드 컨버터에서 소프트 스위칭 기법의 손실 계산

  • Kim Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.698-701
    • /
    • 2001
  • Loss analyses of two soft switching techniques for two-transistor forward converters are presented. The sums of snubber conduction and capacitive turn-on losses for two transistors are calculated to compare the losses of two techniques. While the conventional soft switching technique shows the loss difference between two transistors, proposed soft switching technique shows equal as well as lower loss in two transistors.

  • PDF