• 제목/요약/키워드: Soft Robot

검색결과 105건 처리시간 0.032초

복합 재료와 형상 기억 합금 코일 스프링 구동기를 이용한 유연하게 변형 가능한 바퀴 로봇의 설계 및 제작 (Design and Fabrication of Soft Deformable Wheel Robot using Composite Materials and Shape Memory Alloy Coil Spring Actuators)

  • 고제성;이대영;김지석;김승원;조규진
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.47-52
    • /
    • 2013
  • In order to operate a search and rescue robot in hazardous area, the robot requires high mobility and adaptable locomotion for moving in unpredictable environments. In this paper, we propose the deformable soft wheel robot that can produce three kinds of driving modes; caterpillar driving mode, normal wheel driving mode, legged-wheel driving mode. The robot changes its driving mode as it faces the various obstacles such as a small gap, stairs etc. Soft film and composite materials are used for fabrication of deformable wheel structure and Shape Memory Alloy (SMA) coil spring actuators are attached on the structure as an artificial muscle. Film lamination and an composite manufacturing process is introduced and the robot design is required to be modified and compromised to applying the manufacturing process. The prototype is developed and tested for verifying feasibility of the deformable wheel locomotion.

Obstacle avoidance plan of autonomous mobile robot using fuzzy control

  • Park, Kyung-Seok;Yi, Kyung-Woong;Choi, Han-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2387-2392
    • /
    • 2003
  • In this paper, We designed the local path planning direction algorithmusing fuzzy controller applied fuzzy logic. Algorithm decieded a direction angle by theposition of obstacle, the distance with obstacle, the progress direction of robot, the speed of vehicles and the perception area of sensor. The robot designed with proposed algorithm carried out soft moving without any particular operation, and we could observe that it had very soft curved moving as if an expert drove.

  • PDF

Field-Robot의 안정적 파지운동 제어에 관한 연구 (Research of Stable Grapsing in Field Robot)

  • 박경택;심재군;한현용;양순용;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.492-495
    • /
    • 1997
  • This paper aims to derive a mathematical model of the dynamics of handling task in field robot which stable grasping and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraints of tight area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Thirdly, simulation results are shown and the effects of geometric constraints of contact-area are discussed. Finally, it is shown that even in the simplest case of dual single D.O.F. manipulators there exists a sensory feedback from sensing data of he rotational angle of the object to command inputs to joint actuators and this feedback connection from sensing to action eventually realizes secure grasping of the object, provided that he object is of rectangular shape and motion is confined to a horizontal

  • PDF

안정 파지를 위한 16자유도 역구동 관절을 가지는 인간형 로봇 손 개발 (Development of a 16 DOF Anthropomorphic Robot Hand with Back-Drivability Joint for Stable Grasping)

  • 양현대;박성우;박재한;배지훈;백문홍
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.220-229
    • /
    • 2011
  • This paper focuses on a development of an anthropomorphic robot hand. Human hand is able to dexterously grasp and manipulate various objects with not accurate and sufficient, but inaccurate and scarce information of target objects. In order to realize the ability of human hand, we develop a robot hand and introduce a control scheme for stable grasping by using only kinematic information. The developed anthropomorphic robot hand, KITECH Hand, has one thumb and three fingers. Each of them has 4 DOF and a soft hemispherical finger tip for flexible opposition and rolling on object surfaces. In addition to a thumb and finger, it has a palm module composed the non-slip pad to prevent slip phenomena between the object and palm. The introduced control scheme is a quitely simple based on the principle of virtual work, which consists of transposed Jacobian, joint angular position, and velocity obtained by joint angle measurements. During interaction between the robot hand and an object, the developed robot hand shows compliant grasping motions by the back-drivable characteristics of equipped actuator modules. To validate the feasibility of the developed robot hand and introduced control scheme, collective experiments are carried out with the developed robot hand, KITECH Hand.

Soft-Remote-Control System based on EMG Signals for the Intelligent Sweet Home

  • Song, Jae-Hoon;Han, Jeong-Su;Pak, Ji-Woo;Kim, Dae-Jin;Jung, Jin-Woo;Bien, Z. Zenn;Lee, He-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1163-1168
    • /
    • 2005
  • This paper proposes a soft-remote-control (soft-remocon) system based on EMG signals for the Intelligent Sweet Home. The proposed system is applied to Intelligent Sweet Home which was developed to help the independence living of the elderly and physically handicapped individuals. The goal of proposed system is to control home-installed electronic devices such as TV, air-conditioner, curtain and lamp in Intelligent Sweet Home using EMG signals. Features such as VAR and DAMV having good separability performance are selected for pattern classification. FMMNN is adopted as a pattern classifier. Classification results are allowed to a developed remote control module and then corresponding infrared pulses can operate home-installed electronic devices. We concluded that EMG as an input interface for home-installed electronic devices in Intelligent Sweet Home.

  • PDF

Soft-Tip을 가진 Dual Finger의 파지운동제어에 관한 연구 (Research of Controlled Motion of Dual Fingers with Soft-Tips Grasping)

  • 박경택;양순용;한현용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.670-673
    • /
    • 2000
  • This paper attempt analysis and computer simulation of dynamics of a set of dual multi-joint fingers with soft-deformable tips which are grasping. Firstly, a set of differential equation describing dynamics of the fingers and object together with geometric constraint of tight area-contacts is formulated by Euler-Lagrange's formalism. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of area-contacts of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Finally, simulation results are shown and the effects of geometric constraints of area-contact is discussed.

  • PDF

유연한 착용형 손 로봇 기술 동향 (Trend of Soft Wearable Robotic Hand)

  • 인현기;정우석;강병현;이해민;구인욱;조규진
    • 제어로봇시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.531-537
    • /
    • 2015
  • Hand function is one of the essential functions required to perform the activities of daily living, and wearable robots that assist or recover hand functions have been consistently developed. Previously, wearable robots commonly employed conventional robotic technology such as linkage which consists of rigid links and pin joints. Recently, as the interest in soft robotics has increased, many attempts to develop a wearable robot with a soft structure have been made and are in progress in order to reduce size and weight. This paper presents the concept of a soft wearable robot composed of a soft structure by comparing it with conventional wearable robots. After that, currently developed soft wearable robots and related issues are introduced.

유연 소재 기반 로봇의 강성 조절을 위한 구조 결합 기반 이중 강성 (Dual-Stiffness by Combined Structures for Rigidity-Tuning of Soft Robot)

  • 최재혁;이대영;조규진
    • 로봇학회논문지
    • /
    • 제12권3호
    • /
    • pp.263-269
    • /
    • 2017
  • Recently, soft robots using soft materials are presented. Thanks to soft materials, soft robots have flexible, highly-stretchable or adaptable features. However, due to the flexibility of soft material, it is hard for soft robots to control accurately or perform high force. To deal with these limitations, variable stiffness technology, which enables the stiffness control of structure, has been developed. In this research, a dual-stiffness structure that is actuated by the assembly of two flexible structures are presented. Each flexible structure consists of flexible film part and rigid parts placed at regular intervals. The flexibility of film between rigid parts allows each structure to move softly. On the other hand, by combining two structures rigid part of each part constrain the degrees of freedom of the other side part. And this causes the stiffness of whole structure to be increased. This paper will cover concepts, design, analysis and experiments of this structure.

소프트 컴퓨팅에 의한 지능형 주행 판단 시스템 (A Judgment System for Intelligent Movement Using Soft Computing)

  • 최우경;서재용;김성현;유성욱;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.544-549
    • /
    • 2006
  • 본 논문은 인간의 보조 역할을 하기 위해 자율적인 명령을 내리고 사용자가 직접 제어할 수 있는 지능형 주행 판단 시스템(Judgment System for Intelligent Movement; JSIM)에 대한 연구이다. 본 논문에서는 제어 대상은 이동 로봇으로 한정한다. 이동 로봇은 지능형 주행 판단 모듈을 휴대한 사용자에게 영상정보와 초음파 센서 정보를 제공하고 가이드 역할을 수행한다. 그리고 PDA와 센서박스로 구성된 지능형 주행 판단 시스템은 이동로봇으로부터 얻은 정보와 사용자 명령을 입력으로 사용하는 소프트 컴퓨팅 기법을 이용하여 이동로봇의 속도와 방향을 결정하고 다양한 기능을 수행하도록 로봇을 원격으로 제어한다. 본 논문에서는 몸에 착용하고 주변장치들과 통신을 하며 지능적 판단을 할 수 있는 지능형 주행 판단시스템을 구성하고 실제 환경에서 지능적 판단 알고리즘 적용과 이동로봇을 제어하는 시스템을 구현하여 제안한 시스템의 실현 가능성을 검증한다. 지능 알고리즘은 계층적 퍼지 구조와 신경망을 융합한 구조이다.

다관절 핑거 로봇의 파지 운동 모델과 제어에 관한 연구 (A Study on Model and Control of Pinching Motion for Multi-Fingered Robot)

  • 엄혁;최종환;김용석;양순용;이진걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1060-1067
    • /
    • 2005
  • This paper attempts to derive and analyze the dynamic system of pinching a rigid object by means of two multi-degrees-of-freedom robot fingers with soft and deformable tips. It is shown firstly that a set of differential equation describing dynamics system of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It is shown secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this paper, the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the dynamic stable grasping of the dual fingers robot with soft tips.

  • PDF