• Title/Summary/Keyword: Soft Power

Search Result 1,250, Processing Time 0.03 seconds

Analysis, Design and Experimental Comparison of 2㎾ Power Factor Corrector Converters With Soft-Switching Methods (소프트 스위칭 방식을 갖는 2㎾ PFC 컨버터의 분석 설계 및 실험 비교)

  • Park, Gyeong-Su;Kim, Yun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.537-544
    • /
    • 2002
  • This paper describes a comparative analysis of soft switching boost converters through design, production and experiment. Soft switching boost converters are designed to satisfy the condition of input voltage 170-265Vac, output voltage 400Vdc, output current 5A, output power 20W-2000W and unit power factor. In addition, parameter values are designed so that system operation can be compared under this is similar conditions. The efficiency of the combined inductor soft switching boost converter was 97.63% with 1011 load better than that of other boost converter types. The combined inductor soft switching converter has simple circuit construction and low switching loss. EMI resulted by the switching noise, and harmonic distortion.

Non-isolated Bidirectional Soft-switching SEPIC/ZETA Converter with Reduced Ripple Currents

  • Song, Min-Sup;Son, Young-Dong;Lee, Kwang-Hyun
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.649-660
    • /
    • 2014
  • A novel non-isolated bidirectional soft-switching SEPIC/ZETA converter with reduced ripple currents is proposed and characterized in this study. Two auxiliary switches and an inductor are added to the original bidirectional SEPIC/ZETA components to form a new direct power delivery path between input and output. The proposed converter can be operated in the forward SEPIC and reverse ZETA modes with reduced ripple currents and increased voltage gains attributed to the optimized selection of duty ratios. All switches in the proposed converter can be operated at zero-current-switching turn-on and/or turn-off through soft current commutation. Therefore, the switching and conduction losses of the proposed converter are considerably reduced compared with those of conventional bidirectional SEPIC/ZETA converters. The operation principles and characteristics of the proposed converter are analyzed in detail and verified by the simulation and experimental results.

A Comparative Study on Soft Switching Method of Single Stage AC/DC Full-Bridge Converter (단일전력단으로 구성된 역률 보상 AC/DC Full-Bridge Converter의 소프트 스위칭 기법에 대한 비교 연구)

  • Lee S. R.;Jeon C. H.;Jeong C. G.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.694-697
    • /
    • 2001
  • A optimal soft switching technique for A/DC full bridge converter is proposed. variable soft switching single stage AC/DC full bridge converter with unit power factor are presented in this paper. Using soft switching, we can reduce a switching losses. As a result, achieving good power factor and achieving a good efficiency. We search a optimal soft switching technique in this paper and to verify the theoretical analysis of the presented AC/DC full bridge converter, a design example is given with its Pspice and Psim simulation and experimental results.

  • PDF

A Study on Soft Switching PWM Boost Converter using ZVT Technique (ZVT 기술을 이용한 soft switching DC-DC Boost 컨버터에 관한 연구)

  • 김춘삼
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.141-144
    • /
    • 2000
  • Recently DC-DC converters significantly increase the total losses as rising switching frequency. Traditional soft switching technique for reducing switching losses even increase voltage/current stress of switch. In this paper Resonant circuit for soft switching is connected in parallel with power stage and only operates just before turn-on of the main operates just before turn-on of the main switch, Therefore This doesn't affect the total circuit operation. ZNT-PWM converter designed with 170-260V input 4--V 5A output and 100kHz switching frequency is tested respectively with 500W. 1kW, 1.5kW, and 2kW loads.

  • PDF

A High Performance ZVT-PWM Boost Rectifier with Soft Switched Auxiliary Switch (스프트 스위칭 보조 스위치를 가지는 ZVT-PWM 부스트 컨버터)

  • 김윤호;김윤복;정재웅
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.265-268
    • /
    • 1998
  • This paper presents a soft-switching average current control PWM high power factor boost converter. Conventional boost ZVT-PWM converter has a disadvantage of hard-switching for auxiliary switch at turn-off. A soft switched auxiliary switch is proposed to achieve a high performance ZVT-PWM boost rectifier. The simulation and experimental results show that soft switching operation can be maintained for wide line and load range, which in turn improves the converter performance in terms of efficiency, switching noise and circuit reliability.

  • PDF

A New High Efficiency Power Factor Correction PWM Rectifier with Reduced Conduction Loss and No Auxiliary Switches (새로운 고효율 역율보상 단상 PWM AC/DC 컨버터)

  • Kim, In-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.209-221
    • /
    • 1997
  • This paper presents a soft switching unity power factor PWM rectifier, which features reduced conduction losses and soft switching with no auxiliary switches. The soft switching are achieved by using a simple commutation circuit with no auxiliary switches, and reduced conduction loses are achieved by employing a single converter, instead of a typical front end diode rectifier followed by a boost rectifier. Furthermore, thanks to good features such as simple PWM control at constant frequency, low switch stress and low VAR rating of commutation circuits, it is suitable for high power applications. The principle of operation is explained in detail, and major characteristics analysis and experimental results of the new converter also included.

  • PDF

Japan's gastrodiplomacy as soft power: global washoku and national food security

  • Farina, Felice
    • Journal of Contemporary Eastern Asia
    • /
    • v.17 no.1
    • /
    • pp.152-167
    • /
    • 2018
  • Until recently, Japanese cuisine was known only for sushi and was still considered exotic outside the archipelago. However, today the number of specialized restaurants which serve other traditional foods is constantly increasing all over the world, making Japanese gastronomy one of the most influential. Japanese government has supported the promotion of national cuisine worldwide in different ways, making washoku (Japanese traditional cuisine) one of the main elements of Japan's soft power and cultural diplomacy. In this paper, I will analyse the connection between Japan's gastrodiplomacy, defined as the use of typical food and dishes as an instrument of soft power, and Japan's food security strategy. I will argue that the strategy of promotion of washoku worldwide is not a mere act of popularization of Japanese food but it is strictly related to the issue of the low self-sufficiency rate of the country, as the main objective of the government is the raise of food export, in order to foster agricultural production and improve self-sufficiency.

Point of Soft Switching Technology on Practical Application

  • Koga, Takashi
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.262-268
    • /
    • 2001
  • Remarkable progress has been performed in power electronics, using high frequency switching based on the improvement of power semi-conductor devices. In the other hands, it gives us serious problems, such as, insulation, increasing of the high frequency leakage current, and electric corrosion of bearing in the loaded motors driven by inverters using high frequency switching. To improve these problems, many researches have made especially on the application of soft switching technologies. From this point of view IEE-Japan had started the research groups on soft-switching technology 1997 and 1999. This paper is a survey based on the discussion in this research group with results of ARCP inverter applied for 210kVA power supply.

  • PDF

A New High Power Factor ZVT-ZCT AC-DC Boost Converter

  • Ting, Naim Suleyman
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1539-1548
    • /
    • 2018
  • This paper introduces a new soft switched AC-DC boost converter with power factor correction (PFC). In the introduced converter, all devices are turned on and off under soft switching (SS). The main switch is turned on under zero voltage transition (ZVT) and turned off under zero current transition (ZCT). The main diode is turned on under zero voltage switching (ZVS) and turned off under zero current switching (ZCS). Meanwhile, there is not any current or voltage stress on the main devices. Besides, the auxiliary switch is turned on under ZCS and turned off under ZVS. The detailed theoretical analysis of the converter is presented, and also theoretical analysis is verified by a prototype with 100 kHz and 500 W. Also, the proposed converter has 99.8% power factor and 97.5% total efficiency at soft switching operation.

Basic Study of a Phase-Shifted Soft Switching High-Frequency Inverter with Boost PFC Converter for Induction Heating

  • Kawaguchi, Yuki;Hiraki, Eiji;Tanaka, Toshihiko;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.192-199
    • /
    • 2008
  • This paper is mainly concerned with a high frequency soft-switching PWM inverter suitable for consumer induction heating systems. The proposed system is composed of a soft switching chopper based boost PFC converter stage with passive snubber and phase shifted PWM controlled full bridge ZVZCS high frequency inverter stage. Its fundamental operating performances are illustrated and evaluated in the experimental results. Its effectiveness is substantially proved on the basis of the experimental results from a practical point of view.