• Title/Summary/Keyword: Soft Magnetic Material

Search Result 131, Processing Time 0.026 seconds

Synthesis of Permalloy (Ni-Fe) Nanosheets through Sonoelectrochemical Methods and its Magnetic Properties

  • Rhee, Ryan;Moon, Kyounghoon;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.202-206
    • /
    • 2018
  • Permalloy($Ni_{80}-Fe_{20}$) which is known for its soft magnetic properties is a well-known material that has been studied intensively. Permalloy nanoflakes were fabricated with the combination of electrodeposition and sonication process. Ultrasonic power was applied to the deposited alloy which produced nanoflakes in forms of sheet. High internal stress created cracks which helped the peeling of permalloy into nanosheets. Because of shape anisotropy, flakes could be aligned by magnetic field. The magnetic properties of the nanosheets were observed, and the variation of magnetic properties with the alignment of flake was also investigated.

Fabrication of RF Inductor Using FeTaN Patterned Soft Magnetic Films (Patterned FeTaN 연자성 박막을 이용한 RF inductor의 제조)

  • Bae, Seok;Kim, Choong-Sik;Ryu, Sung-Ryong;Nam, Seoung-Eui;Kim, Hyoung-June;Song, Jae-Sung;Yamaguchi, Masahiro
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.6
    • /
    • pp.239-244
    • /
    • 2001
  • Recently, RF inductor having researched by many workers, we fabricated and investigated properties of RF inductors. In order to improve the Q-factor (Quality), we try to apply the patterned Fe$_{78.81}$Ta$_{8.47}$N$_{12.71}$ soft magnetic thin film of 5000 which shows magnetic anisotropy of 30 Oe. Thus, patterned magnetic film was artificially increased magnetic anisotropy lead to increasing of ferro-magnetic resonance frequency up to GHz band. Coil as part of inductor was fabricated by lift off process. The dimension of RF inductor was designed 47un, rectangular shape, and measured properties. In the case of Ti/Ag air core type inductor shows Q of 9, inductance of 8.4 nH at 2 GHz. Magnetic film employed inductor shows inductance of 9 nH and FMR resonance frequency was 700 MHz.

  • PDF

Fabrication and characteristics of soft magnets on paper (연자성 박막 제지의 형성 및 특성)

  • 김용성;신경호;김광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.96-99
    • /
    • 2001
  • The formation of soft magnets on paper(SMOP) is proposed for the first time and we have demonstrated it successfully. Iorn was used to form the soft magnet thin film on paper. And Cr layer was used as a buffer layer because the roughness of substrate(paper) is not negligible. The maximum magnetization of Cr/Fe/Cr/Paper(Fe:5000${\AA}$) is about 1000 [emu/cc] and the coercive field is about 80 [Oe.]. It is necessary to reduce the coercivity and to enlarge the magnetization value of SMOP to perform a good soft magnetic characteristics on paper. On, the permalloy material is the proper candidate for its high permeability, low coercivity and high magnetization values.

  • PDF

Design and Analyses of Vibration Driven Electromagnetic Energy Harvester with High Power Generation at Low Frequency (저주파수에서 고출력을 갖는 진동형 전자기식 에너지 하베스터의 설계 및 해석)

  • Chung, Gwiy-Sang;Ryu, Kyeong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • This paper describes the design and analyses of vibration driven electromagnetic energy harvester with high power generation which is suitable for supplying power generator from human body motion. The proposed harvester consists of magnet, coil, and SM (Soft magnetic Material). In order to generate more induced voltage, the SM to concentrate flux lines from end of magnetic poles was arranged into insert moving magnet. Each model was designed and analyzed by using ANSYS software to simulation. The maximum power is generated when load resistance of $1303\;{\Omega}$ is equal to coil resistance. The generated maximum power of for harvesters with SM is $677.85\;{\mu}W$ and 5.46 times higher than without SM at 6 Hz vibration frequency.

Properties of Fe-based Soft magnetic Thin Film with Hybrid Structures (Hybrid 구조의 Fe계 연자성 박막의 특성)

  • 송재성;이원재;허정섭;김현식;오영우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.963-968
    • /
    • 2000
  • Magnetic properties and microstructures of Fe$\_$93-x/Zr$_3$B$_4$Ag$\_$x/ thin films were investigated as a function of addition of element Ag, (X$\_$Ag/=0 to 6 at.%) and annealing temperature, T$\_$a/=300$\^{C}$ to 600$\^{C}$. In the case of adding Ag, magnetic properties of Fe$\_$93-x/Zr$_3$B$_4$Ag$\_$x/ thin films were improved than those of Ag-free Fe$\_$93/Zr$_3$B$_4$thin films. The prominent soft magnetic properties with coercivity of 1.1 Oe, saturation magnetization of 2.2 T and permeability of 5400 at 50㎒ were obtained from Fe$\_$88/Zr$_3$B$_4$Ag$\_$5/ thin film annealed was lower than that of Fe-base or Co-base thin films reported previously. Such enhanced magnetic properties are presumably attributed to the format in ultra fine grains. Also, the reduced eddy current loss in the annealed sample is due to refined micro magnetic domains with increasing the amount of Ag in Fe$\_$93-x/Zr$_3$B$_4$Ag$\_$x/ thin films.

  • PDF

The Variation of Packing Density According to Powder Size Distribution and Epoxy Resin in Soft Magnetic Composite (연자성 복합체에서 파우더 크기 분포와 Epoxy Resin에 따른 Packing Density 변화)

  • Lee, Chang Hyun;Oh, Sea Moon;Shin, Hyo Soon;Yeo, Dong Hun;Kim, Jin Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.782-787
    • /
    • 2017
  • There is growing interest in power inductors in which metal soft magnetic powder and epoxy resin are combined. In this field, the process technology for increasing the packing density of magnetic particles in an injection molding process is very important. However, little research has been reported in this regard. In order to improve the packing density, we investigated and compared the sedimentation heights of pastes for three types of soft magnetic alloy powders as a function of the mixing ratios and the type of resin used. Experimental results showed that the packing density was the highest (71.74%) when the mixing ratio was 80 : 16 : 4 (Sendust : Fe-S : CIP) according to the particle size using an SE-4125 resin. In addition, the packing density was found to be inversely related to the layer separation distance. As a result, it was confirmed that the dispersion of solid particles in the paste was important for curing; however, the duration of the curing process can greatly affect the packing density of the final composite.

3-D Analysis of Core Material Effects of Motors on Torque and Iron Loss Characteristics

  • Kawase Yoshihiro;Yamaguchi Tadashi;Okouchi Toshinori;Nord Goran;Kanno Koki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.238-242
    • /
    • 2005
  • In this paper, a surface permanent magnet motor made of the Soft Magnetic Composites (SMC) is analysed using the 3-D finite element method. By comparing with the motor made of the silicon steel sheets, the usefulness of the SMC for the eddy current loss is clarified quantitatively.

Fabrication of Planar Type Inductor Using FeTaN Magnetic thin Films

  • Kim, Chung-Sik;Seok Bae;Jeong, Jong-Han;Nam, Seoung-Eui;Kim, Hyoung-June
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.532-538
    • /
    • 2000
  • A double rectangular spiral inductor is fabricated using FeTaN films. The inductor is composed of internal coils sandwiched by magnetic layers. Characteristics of inductor performance are investigated with an emphasis on planarization of magnetic films. In the absence of the planarization process, the grating topology of upper magnetic films over coil arrays degrades the soft magnetic properties and the inductor performance. It also induces a longitudinal magnetic anisotropy with the easy axis aligned to the magnetic flux direction. This alignment prevents the upper magnetic films from contributing to the total induction. Glass bonding is a viable method for achieving a completely planar inductor structure. The planar inductor with glass bonding shows excellent performance : inductance of 1.1 H, Q factor of 7 (at 5 MHz), and the dc current capability up to 100 mA.

  • PDF