• 제목/요약/키워드: Sodium silicate binder

검색결과 44건 처리시간 0.017초

규산나트륨 바인더 수분함량이 중자 굽힘강도에 미치는 영향 (Effect of the Moisture Content in Sodium Silicate Binder on Bending Strength of Sand Core)

  • 김판성;배민아;이만식;백재호
    • 한국주조공학회지
    • /
    • 제44권3호
    • /
    • pp.70-76
    • /
    • 2024
  • 규산나트륨 바인더는 주조산업의 유기바인더를 대체할 수 있는 친환경 무기바인더이지만, 대기 중의 수분에 대한 낮은 안정성을 가지고 있다. 본 연구는 경화된 규산나트륨 바인더가 가진 수분함량이 바인더의 강도와 안정성에 미치는 영향을 확인하기 위해, 경화 조건을 달리하여 중자를 제작하고 굽힘강도를 측정하였다. 규산나트륨 바인더는 130℃ 이상에서 Q3와 Q2의 실리케이트 구조를 가지는 바인더 가교를 안정적으로 형성하는 것을 확인하였다. 중자의 최대 굽힘강도는 경화 조건에 크게 영향을 받지 않는 것으로 확인되었다. 이는 해당 경화 조건에서 바인더 가교를 형성한 실리케이트 구조가 유사하기 때문이다. 반면에 경화된 바인더의 수분 함량이 적을수록 강도안정성은 높아지는 것을 확인할 수 있었다. 따라서 경화된 규산나트륨 바인더의 수분함량은 바인더의 안정성에 영향을 미치는 중요한 인자인 것을 확인하였다.

규산소오다계 자경성주형의 붕괴성에 미치는 L.D 전로 슬래그 경화제의 영향 (Effect of L.D Converter Slag Hardener on the Collapsibility of Sand Molds Using Sodium Silicate Binder)

  • 최준오;박성택;한윤성;최창옥
    • 한국주조공학회지
    • /
    • 제23권5호
    • /
    • pp.235-243
    • /
    • 2003
  • The collapsibility of sodium silicate-bonded sands mixed with the L.D converter slag powder to form a hardener were investigated. Five to six percent sodium silicate on the basis of silica sand and 30-40% L.D converter slag powder on the basis of sodium silicate, were mixed and the compressive strength, surface stability index(SSI), bench time, retained strength of the standard sand specimens were measured. The properties were similar to those of general inorganic bonded self-setting molds. The compressive strength and surface stability index were increased and the retained strength and bench time were decreased with increased amount of the L.D converter slag powder. The retained strength of sodium silicate-bonded self-setting molds with the L.D converter slag powder were decreased than $CO_2$ sand molds. The collapsibility of sodium silicate-bonded self-setting molds with the L.D converter slag powder were superior in comparison with $CO_2$ sand molds. The L.D converter slag powder could be used as hardener and collapse agent for the sodium silicate-bonded self-setting molds.

규산나트륨에 의한 고로 수쇄슬래그의 수화반응 (Hydration of Granulated Blastfurnace Slag in the Presence of Sodium Silicate)

  • 송종택;이용민
    • 한국세라믹학회지
    • /
    • 제31권5호
    • /
    • pp.538-542
    • /
    • 1994
  • The kinetics and mechanism on the hydration of granulated blastfurnace slag-sodium silicate systems were studied by ignition loss, unreacted slag determination, XRD, DTA and SEM(EDS). From this experiment the following results were obtained. The amount of slag reaction was increased with the content of sodium silicate and also C-S-H, C4AH13, and C2ASH8 were formed to be the main products up to 28 days of hydration. Sodium silicate was not only an activator for slag hydration but also a binder in the hydration. The amount of slag reaction activated by sodium silicate was a nearly same for Ca(OH)2 activated slag, but it was smaller one than that activated by NaOH. However there was no difference in hydration products.

  • PDF

($CO_2$ 주형의 붕괴성에 미치는 글루콘산 소다의 영향 (The Effect of Sodium Gluconic Acid on the Collapsability of $CO_2$ Mold)

  • 신운용;권해욱;남원식
    • 한국주조공학회지
    • /
    • 제14권6호
    • /
    • pp.499-507
    • /
    • 1994
  • The effect of sodium gluconic acid on the collapsability of the sodium silicate type $CO_2$ mold was studied. The bending strength was saturated with gassing $CO_2$ for 60 sec. under $1kg/cm^2$ and with the flow rate of $10\;{\ell}\;/min$. It was decreased with aging after having been fully hardened. The retained strength was reduced in the heating temperature range of $100{\sim}1,100^{\circ}C$ and the retained strength peak near the heating temperature of $100^{\circ}C$ was removed by the effect of the sodium gluconic acid. Silica gel, $Na_2CO_3$ and dehydrated sodium silicates were formed from the binder of sodium silicate with the addition of sodium gluconic acid at the heating temperature of $100^{\circ}C$. $Na_4SiO_4$ was formed by the reaction of $Na_2O$, from decomposed $Na_2CO_3$, with the dehydrated sodium silicate at $500^{\circ}C$. The crystobalite type of $SiO_2$ was formed at $900^{\circ}C$. The sodium gluconic acid had no effect on the bending strength at around $1,100^{\circ}C$ due to the combustion loss of it.

  • PDF

($CO_2$ 주형(鑄型)의 붕괴성(崩壞性)에 대한 잔류강도(殘留强度)의 변화(變化)에 관(關)한 연구(硏究) (Effect of Retained Compression Strength on the Collapsibility of $CO_2$ Process)

  • 최창옥;성경훈
    • 한국주조공학회지
    • /
    • 제3권3호
    • /
    • pp.181-187
    • /
    • 1983
  • Effects of retained compression strength on the collapsibility of $CO_2$ mold sand using sodium silicate were studied. The results obtained from the experiment are summurized as follows; 1) The sand mixtures increased their compression strength and retained compression strength when content of sodium silicate is high or mole ratio of sodium silicate is high. 2) Increase of retained strength has a maximum value at temperatures about $200^{\circ}C$. When the sample reached $800^{\circ}C$, the binder bridge are homogeneous. The retained strength is increased. 3) Decrease of retained strength at temperatures over $200^{\circ}C$ is caused by pore formation and additives of seacoal markedly accelerated pore formations.

  • PDF

Influence of Calcium on the Formation of Aluminosilicate Inorganic Polymer Binder

  • Ahn, Sangwook;Choi, Youngkue;Shin, Byeongkil;Lee, Jungwoo;Lee, Heesoo;Hui, Kwunnam
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.362-366
    • /
    • 2011
  • Aluminosilicate inorganic polymer binder has been studied as an alternative to ordinary Portland cement due to its higher physical properties, chemical resistance and thermal resistance. This study has been carried out in an attempt to understand the hardening characteristics of aluminosilicate binder by varying the content of calcium. Samples with four different ratios of Al, Si, and Ca were synthesized in this study with the Al:Si:Ca mol ratio being 1.00:1.85~1.98:0.29~2.12. Furthermore, an alkali silicate solution was prepared with the sodium hydroxide (NaOH) and sodium silicate (NaSi). The hardening characteristics of the specimens were analyzed using XRD, SEM, and TG/DTA. In addition, compressive strength and sintering time of specimens were measured as a function of calcium content. The results showed that the specimen containing 2.12 mol% calcium offered the highest compressive strength. However, the compressive strength of the specimen containing 0.26 mol% calcium was lower relative to the other specimens. The results displayed a distinct tendency that as more calcium was added to the inorganic polymer, setting time became shorter. When calcium was added to the inorganic polymer structure, a second phase was not formed, indicating that the addition of calcium does not affect the crystalline structure.

알칼리 활성화 알루미노실리케이트계 경화체의 고온 열화 특성 (Degradation Propeties of Alkali-Activated Alumino-Silicate Composite Body Exposed to High Temperature)

  • 김원기;김홍주;이승헌
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.627-630
    • /
    • 2005
  • This paper examines degradation properties of alkali-activated alumino-silicate composite body by NAS solution exposed to high temperature. Activators include sodium hydroxides and sodium silicate solution. In the result of experiment, flexural and compressive strength of AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than alumina cement base mortar. Particularly, In case of compressive strength, alumina cement base mortar was decreased by about $60\~70\%$. While, AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than that curing by room temperature. The above results showed that AAS base inorganic binder has a good mechanical properties exposed to high temperature($400\~600$).

  • PDF

Performance of eco-friendly mortar mixes against aggressive environments

  • Saha, Suman;Rajasekaran, Chandrasekaran;Gupta, Prateek
    • Advances in concrete construction
    • /
    • 제10권3호
    • /
    • pp.237-245
    • /
    • 2020
  • Past research efforts already established geopolymer as an environment-friendly alternative binder system for ordinary Portland cement (OPC) and recycled aggregate is also one of the promising alternative for natural aggregates. In this study, an effort was made to produce eco-friendly mortar mixes using geopolymer as binder and recycled fine aggregate (RFA) partially and study the resistance ability of these mortar mixes against the aggressive environments. To form the geopolymer binder, 70% fly ash, 30% ground granulated blast furnace slag (GGBS) and alkaline solution comprising of sodium silicate solution and 14M sodium hydroxide solution with a ratio of 1.5 were used. The ratio of alkaline liquid to binder (AL/B) was also considered as 0.4 and 0.6. In order to determine the resistance ability against aggressive environmental conditions, acid attack test, sulphate attack test and rapid chloride permeability test were conducted. Change in mass, change in compressive strength of the specimens after the immersion in acid/sulphate solution for a period of 28, 56, 90 and 120 days has been presented and discussed in this study. Results indicated that the incorporation of RFA leads to the reduction in compressive strength. Even though strength reduction was observed, eco-friendly mortar mixes containing geopolymer as binder and RFA as fine aggregate performed better when it was produced with AL/B ratio of 0.6.

Prediction models for compressive strength of concrete with Alkali-activated binders

  • Kar, Arkamitra;Ray, Indrajit;Unnikrishnan, Avinash;Halabe, Udaya B.
    • Computers and Concrete
    • /
    • 제17권4호
    • /
    • pp.523-539
    • /
    • 2016
  • Alkali-activated binder (AAB) is increasingly being considered as an eco-friendly and sustainable alternative to portland cement (PC). The present study evaluates 30 different AAB mixtures containing fly ash and/or slag activated by sodium hydroxide and sodium silicate by correlating their properties from micro to specimen level using regression. A model is developed to predict compressive strength of AAB as a function of volume fractions of microstructural phases (physicochemical properties) and ultrasonic pulse velocity (elastic properties and density). The predicted models are ranked and then compared with the experimental data. The correlations were found to be quite reasonable (R2 = 0.89) for all the mixtures tested and can be used to estimate the compressive strengths for similar AAB mixtures.

고기능성 세라믹 주형 및 중자 제작을 위한 3원계 무기 바인더 시스템 개발 (Development of Ternary Inorganic Binder System for Manufacturing High-Functional Ceramic Molds and Core)

  • 박혜영;조근호;최현희;김봉구;김은희;양승철;정연길
    • 한국재료학회지
    • /
    • 제32권12호
    • /
    • pp.538-544
    • /
    • 2022
  • In existing ceramic mold manufacturing processes, inorganic binder systems (Si-Na, two-component system) are applied to ensure the effective firing strength of the ceramic mold and core. These inorganic binder systems makes it possible to manufacture a ceramic mold and core with high dimensional stability and effective strength. However, as in general sand casting processes, when molten metal is injected at room temperature, there is a limit to the production of thin or complex castings due to reduced fluidity caused by the rapid cooling of the molten metal. In addition, because sodium silicate generated through the vitrification reaction of the inorganic binder is converted into a liquid phase at a temperature of 1,000 ℃. or higher, it is somewhat difficult to manufacture parts through high-temperature casting. Therefore, in this study, a high-strength ceramic mold and core test piece with effective strength at high temperature was produced by applying a Si-Na-Ti three-component inorganic binder. The starting particles were coated with binary and ternary inorganic binders and mixed with an organic binder to prepare a molded body, and then heat-treated at 1,000/1,350/1,500 ℃ to prepare a fired body. In the sample where the two-component inorganic binder was applied, the glass was liquefied at a temperature of 1,000 ℃ or higher, and the strength decreased. However, the firing strength of the ceramic mold sample containing the three-component inorganic binder was improved, and it was confirmed that it was possible to manufacture a ceramic mold and core via high temperature casting.