DOI QR코드

DOI QR Code

Effect of the Moisture Content in Sodium Silicate Binder on Bending Strength of Sand Core

규산나트륨 바인더 수분함량이 중자 굽힘강도에 미치는 영향

  • Panseong Kim (Korea Institute of Industrial Technology (KITECH)) ;
  • Min A Ber (Korea Institute of Industrial Technology (KITECH)) ;
  • Man Sig Lee (Korea Institute of Industrial Technology (KITECH)) ;
  • Jae Ho Baek (Korea Institute of Industrial Technology (KITECH))
  • Received : 2024.04.16
  • Accepted : 2024.05.11
  • Published : 2024.06.01

Abstract

Sodium silicate binder is eco-friendly inorganic binder to substitute organic binder in foundry industry, but it has low stability at moisture. In this study, the bending strength of sand cores with sodium silicate binder at various curing condition was measured for confirm the effect of moisture content in cured sodium silicate binder on the strength and stability. The sodium silicate binder generates stable binder bridge with silicate structure of Q3 and Q2 at 130℃. The maximum bending strength of sand cores was not affected by curing conditions, because the silicate structure of binder bridges was similar. However, the lower moisture content of cured sodium silicate binder, stability of strength was enhanced. Therefore, it was confirmed that the moisture content of cured sodium silicate binder is important factor at stability of sodium silicate binder.

규산나트륨 바인더는 주조산업의 유기바인더를 대체할 수 있는 친환경 무기바인더이지만, 대기 중의 수분에 대한 낮은 안정성을 가지고 있다. 본 연구는 경화된 규산나트륨 바인더가 가진 수분함량이 바인더의 강도와 안정성에 미치는 영향을 확인하기 위해, 경화 조건을 달리하여 중자를 제작하고 굽힘강도를 측정하였다. 규산나트륨 바인더는 130℃ 이상에서 Q3와 Q2의 실리케이트 구조를 가지는 바인더 가교를 안정적으로 형성하는 것을 확인하였다. 중자의 최대 굽힘강도는 경화 조건에 크게 영향을 받지 않는 것으로 확인되었다. 이는 해당 경화 조건에서 바인더 가교를 형성한 실리케이트 구조가 유사하기 때문이다. 반면에 경화된 바인더의 수분 함량이 적을수록 강도안정성은 높아지는 것을 확인할 수 있었다. 따라서 경화된 규산나트륨 바인더의 수분함량은 바인더의 안정성에 영향을 미치는 중요한 인자인 것을 확인하였다.

Keywords

Acknowledgement

This work was supported by the Industrial Strategic Technology Development (00154970) funded by the Ministry of Trade and the Korea Institute of Industrial Technology as "Establishment of the Rapid Manufacturing platform for ceramic additive manufacturing" (EH240008).

References

  1. M.A. Bae, M.H. Kim, J.W. Park, and M.S. Lee, Korean Journal of Metals and Materials, 56(4) (2018) 327.
  2. T. Mizuki, and T. Kanno, International Journal of Metalcasting, 12(4) (2018) 772.
  3. A. Kmita, C. Fischer, K. Hodor, M. Holtzer, and A. Roczniak, Arabian Journal of Chemistry, 11(3) (2018) 380.
  4. M. Holtzer, A. Bobrowski, R. Danko, A. Kmita, S. Zymankowska-Kumon, M. Kubecki, and M. Gorny, Metalurgija, 53(4) (2014) 451.
  5. M.A. Bae, P.S. Kim, K.H. Kim, M.S. Lee, and J.H. Baek, Korean Journal of Metals and Materials, 59(4) (2021) 273.
  6. F. Xin, W. Liu, L. Song, and Y. Li, China Foundry, 17(5) (2020) 341.
  7. ILER, RALPH K., Soil Science, 80(1) (1955) 86.
  8. E.Y. Ko, K.H. Kim, J.H. Baek, I.S. Hwang, and M.S. Lee, Environmental Engineering Research, 26(6), (2021) 200421.
  9. K.H. Kim, M.A. Bae, M.S. Lee, H.S. Park, and J.H. Baek, Journal of Material Cycles and Waste Management, 23 (2021) 121. https://doi.org/10.1007/s10163-020-01103-5
  10. Owusu, and A. Yaw, Advances in Colloid and Interface Science, 18(1-2) (1982) 57.
  11. G. Engelhardt, and D. Hoebbel, Journal of the Chemical Society, Chemical Communications, 8 (1984) 3.
  12. Y. Kurokawa, Journal of Japan Foundry Engineering Society, 89(8) (2017) 464
  13. S. Wen, Q. Shen, Q. Wei, C. Yan, W. Zhu, Y. Shi, J. Yang, and Y. Shi, Journal of Materials Processing Technology, 225 (2015) 93.
  14. Y.B. Ryu, and M.S. Lee, Korean Journal of Metals and Materials, 56(1) (2018) 72
  15. P. Innocenzi, Journal of Non-Crystalline Solids, 316(2-3) (2003) 309.
  16. M. T. Tognonvi, J. Soro, J.L. Gelet, and S. Rossignol, Journal of Non-Crystalline Solids, 358(3) (2012) 492.
  17. U.K.H. Bangi, A. Parvathy Rao, H. Hirashima, and A. Venkateswara Rao, Journal of Sol-Gel Science and Technology, 50(1) (2009) 87.
  18. T. Uchino, T. Sakka, and M. Iwasaki, Journal of the American Ceramic Society, 74(2) (1991) 306.
  19. D. Dimas, I. Giannopoulou, and D. Panias, Journal of Materials Science, 44(14) (2009) 3719.
  20. J. L. Bass and G. L. Turner, Journal of Physical Chemistry B, 101(50) (1997) 10638.
  21. N. Anwar, T. Sappinen, K. Jalava, and J. Orkas, Advanced Powder Technology, 32(6) (2021) 1902.
  22. S. Lucas, M. T. Tognonvi, J. L. Gelet, J. Soro, and S. Rossignol, Journal of Non-Crystalline Solids, 357(4) (2011) 1310.
  23. L. Song, W. Liu, Y. Li, and F. Xin, China Foundry, 16(4) (2019) 267.
  24. Z. Chun-Xi, China Foundry, 4(1) (2007) 13.