• Title/Summary/Keyword: Sodium phosphate

Search Result 499, Processing Time 0.023 seconds

Electrochemical Behaviors and Square Wave Voltammetric Determinations of Cefotaxime Sodium and Ceftriaxone Sodium (세포탁심나트륨과 세프트리악손나트륨의 전기화학 거동 및 네모파 전압전류법 정량)

  • Kim, Min-Kyung;Hahn, Young-Hee
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • Square wave voltammetric (SWV) and cyclic voltammetric (CV) behaviors of cefotaxime sodium and ceftriaxone sodium have been investigated in the potential range between -0.10 V and -1.30 V using the phosphate buffers of various pH values ($2.00{\sim}9.10$). Two main peaks observed were irreversible and protons were involved in their electrochemical reductions. The first peaks of these cephalosporin antibiotics are due to the reduction of the azomethine double bond in the methoxyimino group of the side chain at position 7. The second peaks of cefotaxime sodium and ceftriaxone sodium are related to the reductions of the ${\Delta}^3$ double bond and the dioxo moiety of the side chain at position 3, respectively. The calibration curve of cefotaxime sodium in the concentration range between $1.0{\times}10^{-7}M$ and $1.0{\times}10^{-5}M$ yielded the linearity with the correlation coefficient of 0.9998 when the first peak of the antibiotic in a phosphate buffer of pH 3.02 was measured at the conditions of frequency of 120 Hz and pulse height of 50 mV by SWV. The present fast, simple and accurate SWV assay method was applied to determine cefotaxime sodium in the commercial antibiotic powder of injection.

Changing Features of pH at the Cyclic Aggregate According to Mixing Ratio of Sodium Phosphate and Ammonium Chloride (인산나트륨과 염화암모늄의 혼입 비율에 따른 순환골재의 pH 변화특성)

  • Gao, Shan;Lee, Gun-Cheol;Lee, Gun-Young;Chio, Jung-Gu;Ko, Dong-Guen
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.47-48
    • /
    • 2015
  • Recycled aggregate used in a site is strong alkali due to calcium hydroxide attached on its surface. Accordingly, many environmental problems arise. Therefore, as basic research to reduce pH of recycled aggregate, this study tries to reduce the strong alkalinity of recycled aggregate by using mixture solution based on sodium phosphate and ammonium chloride. As a result, original aggregate has the strong alkalinity of pH 11.23, whereas pH of recycled aggregate immersed in mixture solution decreased as more mixture rate increased, and mostly pH 9.8 or less was found.

  • PDF

Study on the Reactivity of Sodium Phosphate Ammonium Chloride pH Reduction Agents (인산나트륨계 염화암모늄 pH저감제의 반응성 검토)

  • Shin, Ki-Don;Gao, San;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.105-106
    • /
    • 2017
  • Previous studies have confirmed the performance of pH reduction agents using liquid sodium phosphate based ammonium chloride as a pH reduction agent. In this study, the pH reduction performance considering economical and applicability as a practical stage and the property change analysis for the identification of the reaction mechanism of the pH reduction agent were carried out. As a result, the pH reduction performance at a low rate of the pH reducing agent was confirmed. The specific gravity of CaO decreased significantly after XRF analysis. It is also believed that this reduces the amount of Ca(OH)2 produced and contributes to pH reduction.

  • PDF

Enzymatic Synthesis of Flame Retardant Phenolic Polymers Catalyzed by Horseradish Peroxidase (Horseradish Peroxidase 효소촉매에 의한 난연성 페놀고분자의 합성)

  • Park, Han Sol;Park, Jung Hee;Lee, Hak Sung;Ryu, Keungarp
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.111-115
    • /
    • 2013
  • The optimum synthetic conditions of poly(p-phenylphenol) by horseradish peroxidase in dioxane:water (80:20 v/v) mixtures were studied. The stability against thermal degradation and structural properties of the synthesized phenolic resins were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. The synthetic yield of poly(p-phenylphenol) increased upon the increase of the amount of enzyme up to 0.25 mg HRP/mL, then leveled off for further increase of the enzyme usage. When sodium acetate (100 mM, pH 4~6) and sodium phosphate (100 mM, pH 7~9) were used as the buffering salts for the aqueous component (20% v/v), the synthetic yield of the resin increased at higher pH of the aqueous buffer. But when the pHs of the aqueous buffer were 6 and 9, the synthetic yield strongly depended on the types of the buffering salts; if sodium phosphate was used instead of sodium acetate at pH 6, the yield decreased by about 15% and if sodium bicarbonate was used instead of sodium phosphate, the yield decreased by almost 20%. When the pH range of the aqueous buffer was from 4 to 7, the addition of a radical mediator, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS), up to 2 mM improved the synthetic yield of the resin by about 10%. TGA experiments revealed that the thermal stability of the resin synthesized in dioxane:water (100 mM sodium phosphate, pH 9) (80:20 v/v) was high having the char yield of 47% upon the heating at $800^{\circ}C$. DCS results showed that the structures of the polymers synthesized in acidic aqueous buffers were different from those of the polymers synthesized in the basic aqueous buffers. However, all the synthesized resins were found to have the property of the thermosetting resins.

Synthesis Conditions and Rheological Characteristics of Aluminum Phosphate (인산 알루미늄의 합성조건과 유동학적 특성)

  • 신화우;안세민;정동훈;강태욱;이광표
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.319-325
    • /
    • 1991
  • Aluminum phosphate gel was synthesized by reacting aluminum sulfate as a soluble aluminum salt to tribasic sodium phosphate in this study. The optimal synthesis conditions based on the yield of product were investigated by applying Box-Wilson experimental design. It was found that optimal synthesis conditions were as follows: Reaction temperature; $61~71^{\circ}C$, concentration of two reactants; 12.27~13.83%, concentration ratio of two reactants; [AI$_{2}$(SO$_{4}$)$_{3}$]/[Na$_{3}$PO$_{4}$]= 0.5, reaction time; 10.9~12.1 minutes, drying temperature of product; $60~72^{\circ}C$. Aluminum phosphate gel prepared by the optimal synthesis conditions was suspended with four types of natural and synthetic gums at the concentration of 0.375~1.5wv%. Their Theological properties of aluminum phosphate gels were examined with Haake-Rotovisco RV 20 rotational viscometer. It showed that the higher concentration of suspending agents and lower temperature, the higher viscosity. Aluminum phosphate gel suspended by pectin and agar showed plastic flow with rheopexy, and their gels suspended by sodium alginate and sod. CMC showed plastic flow with thixotropy.

  • PDF

Effects of Treatment Method and Environmental Factors on the Bacteriostatic Activity Condensed Phosphates (처리조건이나 환경요인이 중합인산염의 항균력에 미치는 영향)

  • CHANG Dong-Suck;LEE Tai-Seek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.5
    • /
    • pp.394-400
    • /
    • 1990
  • In the previous paper, we reported that the bacteriostatic effect of condensed phosphate. The present study was intended to observe influence of various environmental factors on the bacteriostatic effect of condensed phosphates in the laboratory media, in order to get the information on the possibility to use the phosphate as food preservative. Bacteriostatic effect of sodium polyphosphate was not reduced by the heating at 100 for 1 hour, but it was considerably decreased by heating at $121^{\circ}C$ for 15 min and the phosphate sensitivity of bacteria was increased by freezing and heating. On the other hand, the strong bacteriostatic activity of condensed phosphate was observed below pH 6.5 in nutrient broth culture, and the activity was decreased by the addition of $CaCl_2$, KCl and $MgSO_4$.

  • PDF

Effects of sodium molybdate on myo-inositol phospholipid metabolism-related enzymes in peripheral nerves of lead-intoxicated rats. (Sodium molybdate가 납중독 랫드의 말초신경내 myo-inositol 인지질 대사 관련 효소에 미치는 영향)

  • 박성환;정명규;조해용;최창하;김명녀
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2001
  • We have previously demonstrated that sodium molybdate(Mo) improved lead-intoxicated status by enhancing the metabolism of mao-inositol-related phospholipids in sciatic nerves isolated from rats. In this study, in order to address the reduction mechanism of Mo for lead toxicity, effects of Mo on cystidine-diglyceride transferase, phosphatidylinositol kinase, and phosphatidyl inositol-4-phosphate kinase, involved in mao-inositol metabolism of nerve, were investigated in vivo and in vitro. Mo significantly increased the activities of cystidine- diglyceride transferase and phosphatidylinositol kinase in lead-intoxicated rat, and the pattern of increase was dose-dependent manner. However, Mo did not affect the activity of phosp- hatidylinositiol-4-phosphate kinase in normal and lead-intoxicated rats. We also found that Mo affected the activities of phopholipid metabolism-related enzymes not by the indirect manner such as activation of another metabolic pathway but by the direct manner. These results suggest that the improvement mechanism of Mo for lead-intoxicated status might be a normalization of the activities of phospholipid metabolism-related enzymes in sciatic nerve.

  • PDF

Effect of Diluents on Disintegration Efficiency of Disintegrants in Enzyme Tablets (효소함유 정제에 있어서 붕해제의 효과에 미치는 부형제의 영향)

  • Kim, Jeong-Hoon;Kim, Seung-Hwan;Cha, Bong-Jin;Kwon, Jong-Won
    • YAKHAK HOEJI
    • /
    • v.36 no.6
    • /
    • pp.513-517
    • /
    • 1992
  • The effect of solubility and hygroscopicity of some tablet diluents on the disintegration of enzyme tablets was investigated. Tablets were prepared by direct compression method using sodium starch glycolate, crospovidone, croscarmellose sodium and low-substituted hydroxypropyl cellulose as super disintegrants. Lactose, dextrose, sucrose, sorbitol and calcium phosphate dibasic were selected as typical diluents in this study. They were different in solubility (sucrose, sorbitol>dextrose>dextrose>lactose>calcium phosphate dibasic) and hygroscopicity (sorbitol>sucrose>dextrose>caicium phosphate dibasic, lactose). The disintegrants accelerated differently the disintegration of the tablets prepared with different diluents in the decreasing order of calcium phosphate dibasic>lactose>dextrose>sucrose and sorbitol. These results indicate highly soluble and/or hygroscopic diluents decrease the efficiencies of super disintegrants in the enzyme tablets.

  • PDF

Effect of Phosphate and Citrate Salts on the Emulsion Stability of Soy Protein Isolate in the Presence of Calcium (칼슘 존재하에서 인산과 구연산업이 분리대두단백질의 유화 안정성에 미치는 영향)

  • Kim, Yeong-Suk;Yeom, Dong-Min;Hwang, Jae-Gwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.3
    • /
    • pp.177-182
    • /
    • 1994
  • The effect of phosphate salt (NafHP04) and sodium citrate on the emulsion stability of soy protein isolate (SPI) in the presence of calcium was investigated in terms of salt concentration and addition order. Both phosphate and citrate salts decreased the solubility of SPI despite their pH enhancing effects. Addition of calcium chloride (CaCl2) significantly decreased ES, which showed nearly negligible at more than 3 mM CaCl2 concentration. When Na2HP04 were added in the presence of 5 mM Cac12, 55 greatly increased up to 20mM concentration, above which however ES decreased. It was found that the addition order of Na2HPO4 and CaCl2 affected ES. The addition of phosphate and subsequent CaCl2 exhibited the higher 55 than the reverse order. In both cases, the overall ES profile was found to be nearly similar to the solubility profile of SPI, indicating the positive relationship between solubility and emulsion stability of SPI in the presence of calcium. Similar trend to the phosphate effect on ES was also observed for sodium citrate in the presence of calcium.

  • PDF

Effects of Nitrite and Phosphate Replacements for Clean-Label Ground Pork Products

  • Jiye Yoon;Su Min Bae;Jong Youn Jeong
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.232-244
    • /
    • 2023
  • We investigated the effects of different phosphate replacements on the quality of ground pork products cured with sodium nitrite or radish powder to determine their potential for achieving clean-label pork products. The experimental design was a 2×5 factorial design. For this purpose, the ground meat mixture was assigned into two groups, depending on nitrite source. Each group was mixed with 0.01% sodium nitrite or 0.4% radish powder together with 0.04% starter culture, and then processed depending on phosphate replacement [with or without 0.5% sodium tripolyphosphate; STPP (+), STPP (-), 0.5% oyster shell calcium (OSC), 0.5% citrus fiber (CF), or 0.5% dried plum powder (DPP)]. All samples were cooked, cooled, and stored until analysis within two days. The nitrite source had no effect on all dependent variables of ground pork products. However, in phosphate replacement treatments, the STPP (+) and OSC treatments had a higher cooking yield than the STPP (-), CF, or DPP treatments. OSC treatment was more effective for lowering total fluid separation compared to STPP (-), CF, or DPP treatments, but had a higher percentage than STPP (+). The STPP (+) treatment did not differ from the OSC or CF treatments for CIE L* and CIE a*. Moreover, no differences were observed in nitrosyl hemochrome content, lipid oxidation, hardness, gumminess, and chewiness between the OSC and STPP (+) treatments. In conclusion, among the phosphate replacements, OSC addition was the most suitable to provide clean-label pork products cured with radish powder as a synthetic nitrite replacer.