• Title/Summary/Keyword: Sodium ion

Search Result 623, Processing Time 0.029 seconds

Effects of Selenate Ion Concentration in Nutrient Solution on the Growth and Essential Oil Content of Wormwood( Artemisia absinthium L.) (배양액 내의 Selenate 이온농도가 웜우드(Artemisia absinthium L.)의 생육 및 정유함량에 미치는 영향)

  • Park, Kuen-Woo;Lee, Yun-Jeong;Jeong, Jin-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.264-269
    • /
    • 1997
  • This study was conducted to evaluate appropriate selenate ion concentration for the production of high functional vegetables. Sodium selenate was treated 0, 2, 4, 6 and 8mg/$\ell$ using herb nutrient solution developed by European R & D Vegetable Center in Belgium. Low level of Na2se04 concentration increased the growth of wormwood, but high selenate concentration decreased the growth. Total chlorophyll content was increased by sodium selenate. The higher selenate ion concentration in the nutrient solution, the more total chlorophyll content was. The vitamin C content in wormwood was high at 2 and 4mg/$\ell$ treatment, showing good growth, at higher concentration, however, the vitamin C content decreased. At 4mg/$\ell$ selenate ion concentration, essential oil content of wormwood was best. But higher selenate ion concentration decreased essential oil content. The uptake of Se by the plant increased with the increase of selenate ion concentration.

  • PDF

Resistance against Chloride Ion and Sulfate Attack of Cementless Concrete (무시멘트 콘크리트의 염소이온 침투 및 황산염 침투 저항성)

  • Lee, Hyun-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Lee, Kwang-Myong;Jeon, Jun-Tai
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.63-69
    • /
    • 2015
  • It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the resistance against chloride ion and sulfate attack of the cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of $20{\pm}3^{\circ}C$ and immersed in fresh water, 10% sodium sulfate solution for 28 and 91 days, respectively. To evaluate the resistance to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete with decreasing water-binder ratio.

A Study on the Separation of Cesium Cations by Using Electrochemical Ion Exchanger of KNiFe(CN)6 (KNiFe(CN)6 전기화학적 이온교환체를 이용한 세슘 양이온의 분리에 관한 연구)

  • Hwang, Young Gi
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.256-263
    • /
    • 2012
  • This study was performed to investigate the separation of cesium cations by using an electrochemical ion exchanger of nickel hexacyanoferrate($KNiFe(CN)_6$) film electrode. Potential, current, and charge passing through the cyclic voltammograms were measured in singular and binary solutions of 1.0M $NaNO_3$ and 1.0M $CsNO_3$. Before and after each experiment, the structural morphology and atomic composition of $KNiFe(CN)_6$ were analyzed by SEM and EDS, respectively. The ion selectivity of $KNiFe(CN)_6$ was also observed by the voltammograms and atomic compositions measured in the solution alternated between sodium and cesium. As the result of this study, it was found that the electrically switched $KNiFe(CN)_6$ ion exchanger had the significant advantage of 40 times or longer durability than conventional organic or inorganic ion exchanger. It was also shown that the $KNiFe(CN)_6$ ion exchanger had high selectivity for cesium over sodium.

Application of Liquid Theory to Sodium-Ammonia Solution

  • Lee, Jong-Myung;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.3
    • /
    • pp.90-96
    • /
    • 1981
  • The significant structure theory of liquids has been successfully applied to the sodium ammonia solution. In applying the theory to sodium ammonia solution, we assumed there were four species in solution, i.e., sodium cation, solvated electron, triple ion, and free electron and equilibria existed between them. Based on these assumptions, we set up the model explaining the anomalous properties of sodium ammonia solution. The partition function for sodium ammonia solution is composed of the partition functions for the above four species and also for the Debye-Huckel excess free energy term. Agreements between calculated and experimental values of the thermodynamic quantities, such as molar volume, vapor pressure, partial molar enthalpy and entropy, and chemical potential as well as viscosity are quite satisfactory.

mPW1PW91 Calculated Structures and IR Spectra of Thiacalix[4]biscrown-5 Complexed with Alkali Metal Ions

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1685-1691
    • /
    • 2011
  • The molecular structures of thiacalix[4]biscrown-5 (1) and p-tert-butylthiacalix[4]biscrown-5 (2) and their alkali-metal-ion complexes were optimized using the DFT BLYP/6-31G(d) and mPW1PW91/6-31G(d,p) (hybrid HF-DF) calculations. The total electronic energies, the normal vibrational modes, and the Gibbs free energies of the mono- and di-topic complexes of each host with the sodium and potassium ions were analyzed. The $K^+$-complexes exhibited relatively stronger binding efficiencies than $Na^+$-complexes for both the monoand di-topic complexes of 1 and 2 comparing the efficiencies of the sodium and potassium complexes with an anisole and phenol. The mPW1PW91/6-31G(d,p) calculated distances between the oxygen atoms and the alkali metal ions were reported in the alkali-metal-ion complexes ($1{\cdot}Na^+$, $1{\cdot}2Na^+$, $1{\cdot}K^+$, $1{\cdot}2K^+$, $2{\cdot}Na^+$, $2{\cdot}Na^+$, $2{\cdot}K^+$, $2{\cdot}2K^+$). The BLYP/6-31G(d) calculated IR spectra of the host 1 and its mono-topic alkali-metal-ion complexes are compared.

Micelle Catalysis on the Reaction between Triphenylmethane Dyes and Cyanide Ion (Triphenylmethane Dye와 Cyanide Ion과의 반응에 대한 Micelle의 촉매작용)

  • Won Fae Koo
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.411-415
    • /
    • 1973
  • The reaction between cyanide ion and triphenyl methane dyes is subject to marked catalysis by cationic micelles of cetyltrimethyl ammonium bromide(CTABr) and retarded by anionic micelles of sodium lauryl sulfate(NaLS). Added salts, anions inhibit the catalysis by CTABr, and cations, especially $Zn^{++},\;Cd^{++}$ decrease the retardation of the reaction rates in the presence of NaLS. The kinetic effects of the ionic micelles are much larger in water than in ethanol-water, methanol-water, propanol-water and acetone-water, but strange solvent effects, acceleration the reaction rates, was found in the reaction with malachite green in water-methanol system.

  • PDF

Ab Initio Study of Complexation of Alkali Metal Ions with Alkyl Esters of p-tert-Butylcalix[4]arene

  • Choe, Jong-In;Oh, Dong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.847-851
    • /
    • 2004
  • The complexation characteristics of tetramethyl (1) and tetraethyl esters (2) of p-tert-butylcalix[4]arene with alkali metal cations have been investigated by ab initio calculation. The structures of endo- or exocomplexation of the hosts in cone conformation with alkali metal ions have been optimized using HF/6-31G method followed by B3LYP/6-31G(d) single point calculation. B3LYP/6-31G(d) calculations suggest that exo-complexation efficiencies of sodium ion to the cavity of lower rim of hosts 1 and 2 are 27.1 and 25.8 kcal/mol better than that of potassium ion, respectively. The exo-complexation efficiencies of potassium ion to the cavity of lower rim of hosts 1 and 2 are 33.3 and 31.5 kcal/mol better than the endo-complexation inside the upper rim (four aromatic rings) as expected from the experimental results. B3LYP/6-31G(d) calculation of the ethyl ester 2 shows 29.5 and 30.8 kcal/mol better exo-complexation efficiency for both sodium and potassium ions than the methyl ester 1.

L-lysine and L-arginine inhibit the oxidation of lipids and proteins of emulsion sausage by chelating iron ion and scavenging radical

  • Xu, Peng;Zheng, Yadong;Zhu, Xiaoxu;Li, Shiyi;Zhou, Cunliu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.905-913
    • /
    • 2018
  • Objective: To evaluate the effects of L-lysine (Lys)/L-arginine (Arg) on lipid and protein oxidation of emulsion sausage during storage and its possible mechanism. Methods: Four samples were prepared based on the presence or absence of additional sodium isoascorbate, Lys, or Arg: sample A (control), sample B (0.05 g of sodium isoascorbate), sample C (0.4 g of Lys), and sample D (0.4 g of Arg). Peroxide value (POV), thiobarbituric reactive substances (TBARS), protein carbonyls and thiols were measured. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging, ferrous ion-chelating ability were also measured. Results: Compared with the control, the sample treated with sodium isoascorbate, Lys or Arg had significantly lower POV during the initial 20 days, TBARS during the initial 15 days. Protein carbonyls were significantly lower compared Sample B, C, and D with A during the later storage (10 to 25 days); basically, protein thiols became lower during storage when the samples were treated with sodium isoascorbate, Lys, or Arg. Both Lys and Arg had weak reducing power but strong ferrous ion-chelating activity and DPPH radical- and hydroxyl radical-scavenging activity. Conclusion: Both Lys and Arg effectively inhibited the oxidation of lipids and proteins in emulsion sausage by scavenging free radicals and chelating ferrous ions. The results obtained may be favorable for the prevention of lipid and protein oxidation during processing and storage of meat products.

Physical and Chemical Properties of Soluble Sodium Silicate (수용성 규산나트륨의 물리 · 화학적 특성)

  • Ha, Youn Shick;Park, Kyeong Il;Seo, Moo Lyong
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.172-181
    • /
    • 1999
  • To develop the manufacturing technique for the powder builder of amorphous solid types, the water glass mixed with caustic soda dispersed into the methanol. Thus soluble sodium silicate was made a form of amorphous solid powder. In order to examine characteristics of water soluble sodium silicate $SiO_2/Na_2O$ mol ratio, we investigated solubility, thermogram, SEM, and BET analysis. pH buffering capacity, calcium-ion binding capacity as temperature change, and surfactant loading capacity were examined for characteristics as laundry detergent builder. $SiO_2/Na_2O$ molar ratio of soluble sodium silicate was 1.0, 2.4, 2.8, and zeolite was used in order to investigate basic characteristics of laundry detergent builder. Silicate used with laundry detergent was good for pH buffering capacity and solubility. But calcium-ion binding capacity and surfactant adsorption ability were lower. $SiO_2/Na_2O$ mol ratio became higher, pH buffering capacity and ion exchange ability were lower and surfactant adsorption ability was a little higher.

  • PDF

Fabrication of Potentiometric Sodium-ion Sensor Based on Carbon and Silver Inks and its Electrochemical Characteristics (탄소 및 은 잉크 기반의 전위차 나트륨 이온 센서 제조 및 이의 전기화학적 특성)

  • Kim, Seo Jin;Son, Seon Gyu;Yoon, Jo Hee;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.456-460
    • /
    • 2021
  • A potentiometric sodium-ion (Na+) sensor was prepared using a screen-printing process with carbon and silver inks. The two-electrode configuration of the sensor resulted in potential differences in Na+ solutions according to Nernstian equation. The obtained Na+-sensor exhibited an ideal Nernstian sensitivity, fast response time, and low limit of detection. The Nernstian response was stable when the sensor was tested for repeatability and long-term durability. The Na+-selective membrane coated onto the carbon electrode selectively passed sodium ions against interfering ions, indicating an excellent selectivity. The portable Na+-sensor was finally fabricated using a printed circuit system, demonstrating the successful measurements of Na+ concentrations in various real samples.