• Title/Summary/Keyword: Sodium gloconate

Search Result 2, Processing Time 0.016 seconds

Recycling of Sludgewater containing Set-retarder (지연제 첨가에 의한 회수수의 재이용)

  • Song, Young-Jin;Daiki, Atarashi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.761-764
    • /
    • 2008
  • Most of ready-mixed concrete plants have the problem of construction waste sludge, which pollutes environment and causes economic loss due to the discard and increasing the cost of concrete. Thus, a recycling of the cement sludge has been strongly desired as one of their solution. This research is to the study on the recycling of the cement sludge, especially the study on the hydration control by the sodium gluconate as a set-retarder. The set-retarder can delay the hydration of the cement included in the sludge water, so that the sludge water can be substituted with some of new cement without the property of the cement. And it invests the effect of the sodium gluconate to the hydration of the cement in suspension. The degree of hydration of cement may be controlled by adding the sodium gliconate. The hydration delay time is observed that depends on the concentration of residual sodium gloconate, not how long the cement has been hydrated before the addition of the sodium gluconate.

  • PDF

Optimization of Biotransformation Process for Sodium Gluconate Production by Aspergillus niger (Aspergillus niger를 이용한 글루콘산 나트륨 생산 생변환 공정의 최적화)

  • 박부수;조병관;이상윤;임승환;김동일;김병기
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.309-314
    • /
    • 1999
  • In order to produce high concentration of sodium gluconate, optimization of the fermentation conditions, such as glucose concentration, inoculum size, dissolved oxygen concentration and glucose feeding method, was examined. When the glucose concentration was maintained in the range of 30∼50 g/L during the batch fermentation, glucose conversion yield and productivity were 92.2% and 6.0 g/L/hr, respectively. In the case of the low concentration below 30 g/L, the yield decreased by about 25%. As the inoculum size increased above 20%(w/v), lag phase was shortened but the productivity decreased. The dissolved oxygen level of 60∼70% was shown to be the threshold point for 75% of increase in the productivity of sodium gluconate. Finally, optimal glucose feeding rate was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and on the oxygen uptake rate and etc. Our result shows that glucose feeding, based on the oxygen uptake rate is a very simple, efficient and robust method, especially when oxygen is consumed as a substrate for the bioconversion. Using the above glucose feeding strategy under the optimized condition, 255 g/L of sodium gluconate concentration, 12 g/L/hr of productivity and 95% of glucose conversion yield were achieved with A. niger ACM53.

  • PDF