• Title/Summary/Keyword: Sodium Cyanide

Search Result 55, Processing Time 0.022 seconds

Characterization of an Iron- and Manganese-containing Superoxide Dismutase from Methylobacillus Sp. Strain SK1 DSM 8269

  • Seo, Sung Nam;Lee, Jae Ho;Kim, Young Min
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.370-378
    • /
    • 2007
  • A superoxide dismutase was purified 62-fold in seven steps to homogeneity from Methylobacillus sp. strain SK1, an obligate methanol-oxidizing bacterium, with a yield of 9.6%. The final specific activity was 4,831 units per milligram protein as determined by an assay based on a 50% decrease in the rate of cytochrome c reduction. The molecular weight of the native enzyme was estimated to be 44,000. Sodium dodecyl sulfate gel electrophoresis revealed two identical subunits of molecular weight 23,100. The isoelectric point of the purified enzyme was found to be 4.4. Maximum activity of the enzyme was measured at pH 8. The enzyme was stable at pH range from 6 to 8 and at high temperature. The enzyme showed an absorption peak at 280 nm with a shoulder at 292 nm. Hydrogen peroxide and sodium azide, but not sodium cyanide, was found to inhibit the purified enzyme. The enzyme activity in cell-free extracts prepared from cells grown in manganese-rich medium, however, was not inhibited by hydrogen peroxide but inhibited by sodium azide. The activity in cell extracts from cells grown in iron-rich medium was found to be highly sensitive to hydrogen peroxide and sodium azide. One mol of native enzyme was found to contain 1.1 g-atom of iron and 0.7 g-atom of manganese. The N-terminal amino acid sequence of the purified enzyme was Ala-Tyr-Thr-Leu-Pro-Pro-Leu-Asn-Tyr-Ala-Tyr. The superoxide dismutase of Methylobacillus sp. strain SK1 was found to have antigenic sites identical to those of Methylobacillus glycogenes enzyme. The enzyme, however, shared no antigenic sites with Mycobacterium sp. strain JC1, Methylovorus sp. strain SS1, Methylobacterium sp. strain SY1, and Methylosinus trichosproium enzymes.

Isolation and Characterization of Peroxidase from Jerusalem Artichoke Tubers (돼지감자 Peroxidase의 분리와 특성)

  • Yoon, Eun-Seok;Kang, Su-Jung;Noh, Bong-Soo;Choi, Eon-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.565-570
    • /
    • 1993
  • Peroxidase from Jerusalem artichoke tubers, which might be related to browning reaction, was purified by ammonium sulfate precipitation, DEAE-cellulose and Sephacryl S-200 chromatography. The optimum pH of the purified peroxidase was 5.0 and relatively stable at pH $5.0{\sim}6.0$ using substrate of p-phenylenediamine and $H_2O_2$. D-values for thermal inactivation at 60, 70 and $80^{\circ}C$ were 86, 45 and 33 sec, respectively. Activation energy was 4,111 J/mole. The enzyme showed the most sensitive specificity of substrate for p-phenylenediamine. The compounds such as 1mM potassium cyanide, 10mM sodium diethyldithiocarbamate, L-ascorbic acid, sodium hydrosulfite and L-cysteine inhibited completely while 1mM of $Ca^{2+}\;and\;Cu^{2+}$ activated the purified peroxidase.

  • PDF

Synthesis of New Hydantoin-3-Ethanethioi Derivatives

  • Oh, Chang-Hyun;Lee, Ki-Soo;Roh, Eun-Joo;Kwon, Soon-Kyung;Cho, Jung-Hyuck
    • Archives of Pharmacal Research
    • /
    • v.17 no.4
    • /
    • pp.281-283
    • /
    • 1994
  • 5-sec-butylthiomethyl-5-alkyl (methyl or phenyl) hydantoins (3-x) were prepared by the reaction of sec-buylthiomethyl alkyl (methyl or phenyl) ketone (1-2), potassium cyanide and ammonium carbonate. 3-(2-Bromoethyl) hydantoins (5-6) were the reaction products of 5-sec-buythiomethyl-5-alkyl (methyl or phenyl) hydantoin and 1, 2-dibromothane in the presence of potassium hydroxide. Alkylation of 5 and 6 with an excess of alkyl (methyl or ethyl iodide in THF with sodium hydride as base gave three 1-alkyl (methyl or ethyl)-3-(2-bromoethyl) hydantoins (7-9). Treatment of the 2-bromothyl group with potassium thioacelate and triethylamine gave three 1-alkyl (methyl or ethyl)-3-92-acetylthioethyl) hydantoins (10-12). Hydrolysis of the 2-acetylthiuoethyl group with sodium hydroxide in methanol afforded the three 1-alkyl (methyl or ethyl)-3-(2-mercaptorthyl) hydantoins.

  • PDF

Preparation of α-Linked 6-Deoxy-D-altro-heptopyranosidic Residues

  • 신영숙;천근호;Shin, E. Nam;Gerald O. Aspinall
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.625-630
    • /
    • 1995
  • α-Linked D-altropyranosidic derivatives were obtained by configurational change at C-3 of α-D-mannopyranosides as the key step in preparation of allyl and methyl α-D-glycopyranosides of 6-deoxy-D-altro-heptose. The manno-altro conversion was effected by sequential reactions of Swern oxidation and stereoselective borohydride reduction. Allyl 4,6-O-benzylidene-2-O-p-methoxybenzyl-α-D-mannopyranoside was transformed to the corresponding altropyranoside via 3-oxo-arabino-hexopyranoside. Allyl 7-O-benzyl-6-deoxy-3,4-O-isopropylidene-α-D-altro-heptopyranoside has been prepared as a glycosyl acceptor to be coupled with β-D-GlcpNAc-(1→3)-α-D-Galp glycosyl donor for the synthesis of an O-antigen repeating unit of Campylobacter jejuni serotypes O:23 and O:36. Stereoselective borohydride reduction also succeeded in yielding methyl 2,4,7-tri-O-benzyl-6-deoxy-α-D-altro-heptopyranoside from the corresponding 3-oxo-α-D-arabino-heptopyranoside. C-6 Homologation was achieved by sequential reactions of cyanide displacement of 6-sulphonates, reduction of the resulting heptopyranosidurononitrile with diisobutylaluminum hydride, hydrolysis of the imine, and further reduction with sodium borohydride.

Utilization of Ascidian, Halocynthia roretzi -4. Browning of Ascidian meat, Halocynthia roretzi and Its Prevention- (우렁쉥이 이용에 관한 연구 -4. 우렁쉥이 육의 갈변 및 그 방지-)

  • LEE Kang-Ho;CHO Ho-Sung;KIM Dong-Soo;HONG Byeong-Il;PARK Cheon-Soo;KIM Min-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.3
    • /
    • pp.214-220
    • /
    • 1993
  • Browning of ascidian, Halocynthia roretzi, meat occurres very rapidly when skinned off or cut during processing and it resulted the quality loss of fresh frozen, dehydrated or fermented products. In this study, the causes of color development and prevention of browning were experimented. The browning of ascidian meat may be occurred enzymatically by a tyrosinase contained in meat and viscera which acted specifically on L-tyrosine as a substrate rather than on catechol. Activity of the enzyme in viscera was three times higher than in meat. The optimum pH and temperature on the tyrosinase activity of crude enzyme obtained from ascidian was 6.0 and $30{\sim}35^{\circ}C$, respectively. The enzyme was inactivated heating at $80^{\circ}C$ for 3 minutes or $90{\sim}100^{\circ}C$ for 1 minute and it was inhibited by $0.1{\sim}0.5mM$ solutions at ascorbic acid, sodium hydrogen sulfite, cystein, citric acid, cyanide but only sodium hydrogen sulfite treatment was effective to retard such a high content of enzyme as in case of viscera. In practical use for processing of ascidian meat browning was retarded by dipping the viscera removed ascidian meat in 0.2M citric acid for 5 minutes or $0.2\%$ sodium hydrogen sulfite solution for 1 minute resulting in sulfur dioxide residue less than 100 ppm.

  • PDF

Influences of Divalent Cations and Membrane Phosphorylation Inhibitors on $Na^+-Ca^{++}$ Exchange in Synaptosomes (이가 양이온과 세포막 인산화 반응의 억제제가 Synaptosome에서의 소듐-칼슘 교환이동에 미치는 영향)

  • Shin, Yong-Kyoo;Lee, Chung-Soo;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.179-187
    • /
    • 1988
  • Verapamil, tetrodotoxin and tetraethylammonium chloride in the stated amount did not affect the $Na^{++}$ induced $Ca^{++}$ release. $Cd^{++}$ and $Zn^{++}$ significantly inhibited the $Na^{++}$ induced $Ca^{++}$ release. $Mn^{++}$ also inhibited $Na^+-Ca^{++}$ exchange. $Cd^{++}$ inhibited $Na^+-Ca^{++}$ exchange noncompetitively with an apparent inhibition constant (Ki) of $100\;{\mu}M$. $Cd^{++}$ caused loss of sulfhydryl group, whereas $Zn^{++}$ did not show any significant effect. $Cd^{++}$ and $Zn^{++}$ effectively inhibited $Na^+-Ca^{++}$ ATPase and slightly inhibited $Ca^{++}-Mg^{++}$ ATPase. Carbonyl cyanide chlorophenylhydrazone, 2,4-dinitrophenol and sodium arsenate stimulated the $Na^{++}$ induced $Ca^{++}$ release. Dibucaine and oligomycin slightly inhibited it. The results suggest that the $Na^+-Ca^{++}$ exchange on the synaptosomal plasma membrane may be not accomplished by ion channels. The $Na^+-Ca^{++}$ exchange is sensitively inhibited by $Cd^{++}$ and this transport process appears to be partially regulated by sulfhydryl groups of the synaptosomal plasma membrane. It is also postulated that $Na^+-Ca^{++}$ exchange is suppressed during the phosphorylation reaction of protein component on the neuronal membrane.

  • PDF

Studies on Polyphenol Oxidase from Puerariae Radix (갈근 중의 Polyphenol Oxidase에 관한 연구)

  • Park, Soo-Sun;Kim, An-Keun;Lee, Jeong-Sin
    • Korean Journal of Pharmacognosy
    • /
    • v.22 no.2
    • /
    • pp.101-111
    • /
    • 1991
  • Polyphenol oxidase(PPO) was purified from an extract of Puerariae Radix by ammonium sulfate fractionation followed by Sephadex G-150 column chromatography, which resulted in a 56-fold increase in specific activity. The enzyme was optimum of pH 6.5. The optimum temperature of enzymic reaction was about $40^{\circ}$. The enzyme was thermostable with a half-life equal to 32 min at $70^{\circ}$. Km values of the PPO for catechol and pyrogallol from Lineweaver Burk plots were $1.3{\times}10^{-2}M$, $1.16{\times}10^{-2}M$, respectively. The substrate specificity of the Puerariae Radix PPO showed high affinity toward pyrogallol. Reducing reagents such as cysteine, potassium metabisulfite, ascorbic acid, 2-mercaptoethanol completely inhibited the PPO activity at $10^{-2}M$ level. Linewear-Burk analysis of inhibition data revealed that the inhibition by cysteine, 2-mercaptoethanol, 4-nitrocatechol, potassium cyanide was competitive with Ki values of $4.3{\times10^{-2}M,\;0.73{\times}10^{-6}M,\;6.9{\times}10^{-6}M,\;6.4{\times}10^{-7}M$, respectively. The browning reaction by PPO was observed to decrease temporarily with the addition of sodium diethyl dithiocarbamate, a well known copper chelating agent. Among the divalent cations, $Cu^{2+}$ ion was strong activator on PPO and $Mn^{2+},\;Co^{2+}$ ions was effect on PPO activity. $Zn^{2+},\;Mg^{2+}$ ions was inhibitor on PPO.

  • PDF

Purification and Characterization of a Catalase from Photosynthetic Bacterium Rhodospirillum rubrum S1 Grown under Anaerobic Conditions

  • Kang Yoon-Suk;Lee Dong-Heon;Yoon Byoung-Jun;Oh Duck-Chul
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.185-191
    • /
    • 2006
  • The photosynthetic bacterium, Rhodospirillum rubrum S1, when grown under anaerobic conditions, generated three different types of catalases. In this study, we purified and characterized the highest molecular weight catalase from the three catalases. The total specific catalase activity of the crude cell extracts was 88 U/mg. After the completion of the final purification step, the specific activity of the purified catalase was 1,256 U/mg. The purified catalase evidenced an estimated molecular mass of 318 kDa, consisting of four identical subunits, each of 79 kDa. The purified enzyme exhibited an apparent Km value of 30.4 mM and a Vmax of 2,564 U against hydrogen peroxide. The enzyme also exhibited a broad optimal pH $(5.0{\sim}9.0)$, and remained stable over a broad temperature range $(20^{\circ}C{\sim}60^{\circ}C)$. It maintained 90% activity against organic solvents (ethanol/chloroform) known hydroperoxidase inhibitors, and exhibited no detectable peroxidase activity. The catalase activity of the purified enzyme was reduced to 19 % of full activity as the result of the administration of 10 mM 3-amino-1,2,4-triazole, a heme-containing catalase inhibitor. Sodium cyanide, sodium azide, and hydroxylamine, all of which are known heme protein inhibitors, inhibited catalase activity by 50 % at concentrations of $11.5{\mu}M,\;0.52{\mu}M,\;and\;0.11{\mu}M$, respectively. In accordance with these findings, the enzyme was identified as a type of monofunctional catalase.

Studies on Acetanilide p-Hydroxylase in Streptomyces spp. (Streptomyces 속 중의 Acetanilide p-Hydroxylase에 관한 연구)

  • Kim, Jung-Ae;Lee, Sang-Sup
    • YAKHAK HOEJI
    • /
    • v.32 no.5
    • /
    • pp.295-303
    • /
    • 1988
  • For microbial production of acetaminophen, a popular analgesic-antipyretic from aniline, we screened various fungi and bacteria. And we succeeded to some extents in acetaminophen production by successful protoplast fusion between S. lividans and S. globisporus and also between S. rimosus and S. aureofaciens. However, more fertile results might be brought via performing the cloning of acetanilide p-hydroxylation genes of Streptomyces in yeast. This study was initiated to determine whether the acetanilide p-hydroxylase of Streptomyces is cytochrome P-450 species or non-heme iron protein species. The p-hydroxylationactivity on acetanilide in S. aureofaciens ATCC 10762 was found to be unstable on exposing to the air. However, 100,000xg supernatant of the cell free extracts which were prepared in $N_2$ atmosphere showed the p-hydroxylation activity. Characteristic absorption peak of cytochrome P-450 after reduction with dithionite and addition of CO was not observed in the region of 450nm. Moreover, metyrapone and 2, 6-dichloroindophenol did not affect this enzyme activity, but sodium azide, sodium cyanide, cupric sulfate, cadmium chloride, ${\alpha}$, ${\alpha}'-dipyridyl$, and o-phenanthroline reduced p-hydroxylase activity considerably. S. fradiae NRRL 2702 was shown to have strong p-hydroxylation activity in intact cells. This activity disappeared in its cell free extracts. In its 100,000xg supernatant, however, characteristic absorption peak of cytochrome P-450 after reduction with dithionite and addition of CO was observed at 446nm. Thus, the results herein presented suggest that acetanilide p-hydroxylase of Streptomyces aureofaciens is not related to cytochrome P-450 and may include non-heme iron protein for its activity. However, it is not clear whether acetanilide p-hydroxylase in S. fradiae belongs to the same category of S. aureofaciens.

  • PDF

Purification and Properties of Laccase of the White-rot Basidiomycete Coriolus hirsutus

  • Lee, Yeo-Jin;Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.148-153
    • /
    • 1999
  • Laccase produced by Coriolus hirsutus was purified to electrophoretic homogeneity by acetone precipitation, Sephacryl S-2000 HR chromatography, DEAE Sepharose CL-6B chromatography, and Mono Q HR 5/5 chromatography. The purification of laccase was 46.6-fold with an overall yield of 23.7%. Laccase from this fungus was a monomeric glycoprotein with 16% carbohydrate content, and has an isoelectric point of 4.2, and molecular mass of 78 kDa, respectively. The N-terminal amino acid sequence of the enzyme showed significant homology to hoste of laccases from Coriolus versicolor, Pycnoporus cinnabarius, and an unidentified basidiomycete, PM1. The highest rate of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) oxidation by laccase was reached at 45$^{\circ}C$, and te pH optima of the enzyme varied depending on the substrate in the range of 2.0 to 4.5. The enzyme was stable at 60$^{\circ}C$ for 5 h and lost 80% activity at 80$^{\circ}C$ in 30 min. The enzyme oxidized a variety of usual laccase substrates including lignin-related phenol, and had the highest affinity toward ABTS. Under standard assay conditions, the apparent Km value of the enzyme toward ABTS was 8.1 ${\mu}$M. The enzyme was completely inhibited by L-cysteine and sodium azide, but not by potassium cyanide, SDS, ad thiourea.

  • PDF