• Title/Summary/Keyword: Sod culture

Search Result 182, Processing Time 0.024 seconds

Combined Effects of Copper and Temperature on Antioxidant Enzymes in the Black Rockfish Sebastes schlegeli

  • Min, Eun Young;Baeck, Su Kyong;Kang, Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.345-353
    • /
    • 2014
  • Copper has been widely used to control algae and pathogens in fish culture ponds. However, its toxic effects on fish depend not only on its concentration in the water but also on the water quality. A laboratory experiment was conducted to assess copper toxicity in the black rockfish Sebastes schlegeli using a panel of antioxidant enzymes, including glutathione (GSH), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD), at different levels of copper at three water temperatures (WT, 18, 23, $28^{\circ}C$) for 4 days. After exposure to two copper concentrations (100 and $200{\mu}g/L$), GSH levels and GST activities increased significantly, depending on WT (P < 0.05) in the liver, gill, and kidney of the black rockfish. GPx and SOD activities decreased significantly with both increasing WT and copper treatment in the organs of black rockfish (P < 0.05). These changes can be seen as initial responses to temperature stress and as a sustained response to copper exposure. This also indicates that GSH and related enzymes activities were sensitive indexes to stress by toxicants such as copper. The present findings suggest that simultaneous stress due to temperature change and copper exposure can accelerate changes in enzymes activities in the black rockfish. This provides another example of synergism between environmental temperature and pollutants, which may have important implications for the survival of fish in polluted environments during seasonal warming and/or global climate change.

Exploration of Functional Materials from Oriental Medicine Extracts Cultured with Tricholoma Matsutake Mycelium - (1) Physioactivity of Extracts in Accord with Extraction Methods -

  • Kim, Hae-Ja;Kim, Ki-Chul;Choi, Yun-Hee;Cho, Hwa-Eun;Hong, Hak-Gi;Han, Jung-Ho;Lee, Ki-Nam
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 2008
  • The purpose of this study was to investigate extract from mixed culture with Trichloloma matsutake mycelium in oriental medicine and cereal medium(OCM) to develop new material for pharmaceutical products and medicinal food. To evaluate of physiological activity of OCM extracts, we examined ${\beta}$-glucan contents, SOD-like activity, nitric oxide production and cytotoxicity by MTT assay. ${\beta}$-glucan contents was found to be 52.85% for crude polysaccharide of hot water extracts of OCM(HEE) and 49.74% for crude polysaccharide of ultra sonic waves, micro waves, and micro bubble extracts of OCM (UEE). SOD like activity was showed UE 74.66%, HE 67.16%, UEE 31.34%, HEE 26.10%, respectively. NO production of UEE and HEE, at LPS 1 ug/mL, 1 mg/mL UEE showed 66.62 uM and HEE 45.68 uM. at LPS 10 ug/mL, 1 mg/mL UEE showed 63.91 uM and HEE 51.74 uM. The inhibitory effect against HT1080 was increased dose-dependently in UEE.

  • PDF

Scratching Stimuli of Mycelia Influence Fruiting Body Production and ROS-Scavenging Gene Expression of Cordyceps militaris

  • Liu, Gui-Qing;Qiu, Xue-Hong;Cao, Li;Han, Ri-Chou
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.382-387
    • /
    • 2018
  • The entomopathogenic fungus Cordyceps militaris is a valuable medicinal ascomycete, which degenerates frequently during subsequent culture. To avoid economic losses during industrialized production, scratching stimuli of mycelia was introduced to improve the fruiting body production. The present results indicated that higher yields and biological efficiency were obtained from two degenerate strains (YN1-14 and YN2-7) but not from g38 (an insertional mutant in Rhf1 gene with higher yields and shorter growth periods). Furthermore, the growth periods of the fruiting bodies were at least 5 days earlier when the mycelia were scratched before stromata differentiation. Three ROS-scavenging genes including Cu/Zn superoxide dismutase (CmSod1), Glutathione peroxidase (CmGpx), and Catalase A (CmCat A) were isolated and their expression profiles against scratching were determined in degenerate strain YN1-14 and mutant strain g38. At day 5 after scratching, the expression level of CmGpx significantly decreased for strain g38, but that of CmSod1 significantly increased for YN1-14. These results indicated that scratching is an effective way to promote fruiting body production of degenerate strain, which may be related at least with Rhf1 and active oxygen scavenging genes.

Impact of imatinib or dasatinib coadministration on in vitro preantral follicle development and oocyte acquisition in cyclophosphamide-treated mice

  • Hong, Yeon Hee;Kim, Se Jeong;Kim, Seul Ki;Lee, Seung-Chan;Jun, Jin Hyun;Jee, Byung Chul;Kim, Seok Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.4
    • /
    • pp.269-276
    • /
    • 2020
  • Objective: We investigated the impact of tyrosine kinase inhibitor (imatinib or dasatinib) coadministration with cyclophosphamide (Cp) on preantral follicle development in an in vitro mouse model. Methods: Seventy-three female BDF1 mice were allocated into four experimental groups: group A, saline; group B, Cp (25 mg/kg); group C, Cp (25 mg/kg) and imatinib (7.5 mg/kg); and group D, Cp (25 mg/kg) and dasatinib (7.5 mg/kg). Preantral follicles were isolated and cultured in vitro up to 12 days. Final oocyte acquisition and spindle integrity of metaphase II (MII) oocytes were assessed. Levels of 17β-estradiol and anti-Müllerian hormone (AMH) in the final spent media were measured by enzyme-linked immunosorbent assays, and the mRNA levels of Star, Sod1, Mapk3, and Casp3 in the final follicular cells were quantified by real-time polymerase chain reaction. Results: The percentage of MII oocytes per initiated follicle, the proportion of MII oocytes with normal spindles, and the 17β-estradiol level were similar in all four groups. The median AMH level in group B (7.74 ng/mL) was significantly lower than that in group A (10.84 ng/mL). However, the median AMH levels in group C (9.96 ng/mL) and group D (9.71 ng/mL) were similar to that in group A. The mRNA expression levels of Star, Sod1, Mapk3, and Casp3 were similar in all four groups. Conclusion: Coadministration of imatinib or dasatinib with Cp could preserve AMH production capacity in this in vitro mice preantral follicle culture model, and it did not affect MII oocyte acquisition.

Physiological Activity of Robinia pseudo acacia Leaf Extracts and Enhancement of Skin Permeation Using Polymer Micelles and Cell Penetrating Peptide (아카시아 잎 추출물의 생리 활성 및 고분자 미셀과 세포투과 펩티드를 적용한 피부흡수증진 효과)

  • Heo, Soo Hyeon;Park, Su In;An, Gyu Min;Shin, Moon Sam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • This study was conducted to evaluate physiological activity of Robinia pseudo-acacia leaf and its skin penetration using polymer micelles and skin penetrating peptide. After extraction with Robinia pseudo-acacia using the ethanol and distilled water, various physiological activities were examined. The total concentration of polyphenol compounds was determined to be 47.42 mg/g (ethanol extract), 56.88 mg/g (hydrothermal extract) and DPPH radical scavenging ability at $1,000{\mu}g/mL$ was 44.24% in ethanol extract and it is higher than value(41.50%) in hydrothermal extract. The elastase inhibitory assay showed concentration dependence and elastase inhibition of Robinia pseudo acacia leaf ethanol extract was 54.09%, which was the highest at $500{\mu}g/mL$. In the SOD-like experiments, the concentration-dependent results were showed and the SOD-like activity of the Robinia pseudo-acacia leaf ethanol extract was higher than that of the Robinia pseudo acacia leaf hydrothermal extract at all concentrations. At a concentration of $500{\mu}g/mL$, Robinia pseudo acacia leaf ethanol extract showed the highest SOD-like activity of 76.41%. The tyrosinase inhibition at $20{\mu}g/mL$ was determined to be 56.47% (ethanol extract), 23.05% (hydrothermal extract). In the antimicrobial experiments, the hydrothermal extract had no effect, but ethanol extract represented maximum clear zone of 11.00 mm in Propionbacterium acnes strain and maximum clear zone of 10.50 mm. in Bacillus subtilis strain. To solve the problem of insolubility and to improve skin penetration, PCL-PEG polymer micelles containing Robinia pseudo-acacia leaf ethanol extracts and 1.0% cell permeable peptide, hexa-D-arginine (R6) were successfully prepared with particle size of 108.23 and 126.47 nm and excellent skin permeation effects could be showed.

Effects of Daejo-whan on the Ischemic Damage of Cerebral Neurons in Culture (대조환이 대뇌신경세포의 허혈성 손상에 미치는 영향)

  • Park Se Hong;Lee Kwang Ro;Bai sun jun;Cheong Sang Su;Kang Sei Young;Lee Sang Kwan;Lee Sung Keun;Yoon Ji won;Sung Kang Keyng
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1500-1508
    • /
    • 2003
  • This study was performed to clarify the neurotoxic mechanism of nerve cells damage by brain ischemia. The cytotoxic effect of ischemia was determined by XTT assay, NR assay, superoxide dismutase(SOD) activity, amount of malondialdehyde(MDA), lactate dehydrogenase(LDH) activity, protein synthesis and tumor necrosis factor(TNF)-α activities after cerebral neurons derived from mouse were exposed to ischemia for 1∼30 minutes. In addition, the protective effect of extract of Daejo-whan(DJW) on ischemia-induced neurotoxicity was examined in these cultures. 1. Ischemia decreased cell number and viability by XTT assay or NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO₂ for 1∼20 minutes in these cultures. 2. Ischemia decreased SOD and protein syntheses, but it increased amount of MDA and, LDH and TNF-α activities in these cultures. 3. In the neuroprotective effect of DJW extracts on cerebral neurons damaged by ischemia, DJW extracts increased SOD activity and protein synthesis. While, it decreased amount of MDA and, LDH and TNF-α activities after cerebral neurons preincubated with herb extracts. It suggests that brain ischemia has neurotoxicity on cultured mouse cerebral neurons, and the herb extract such as DJW was very effective in blocking the neurotoxicity induced by ischemia in cultured mouse cerebral neurons.

Influence of N-P-K Nutrient Levels on Ozone Susceptibility of Tomato Plants (N-P-K 양분 수준이 토마토의 오존 감수성에 미치는 영향)

  • Ahn, Joo-Won;Ku, Ja-Hyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.352-357
    • /
    • 1998
  • This experiment was conducted to find out the effects of major nutrient levels(N, P, K) on ozone susceptibility of tomato plants(Lycopersicon esculentum Mill, cv. Pink Glory). Plants were grown in water culture system. A half-strength of Hoagland's nutrient solution was considered as a standard formulation($N_{100}$ $P_{100}$ $K_{100}$). The levels of major nutrients were adjusted through addition or removal of several fertilizer salts from the standard solution. Top growth was significantly decreased at the low nitrogen level or phosphorus removal condition. P- and K-contents of leaves were greatly decreased by removal of salts containing P and K from the nutrient solution. The rate of ozone injury was significantly increased when potassium was removed. However, the influence of nitrogen and phosphorus levels or high potassium level on injury occurrence did not show statistical significance compared to the standard solution. Ozone exposure resulted in reduction of chlorophyll, and increase of ethylene production, electrolyte leakage and malondialdehyde(MDA) contents. These changes were much more enhanced in plants grown at the potassium removal solution. Whereas the activity of superoxide dismutase(SOD) was low at the potassium removal treatment and this tendency remained after ozone exposure. These results indicated that potassium nutrient level in tomato plants is closely associated with the susceptibility to ozone injury.

  • PDF

Stress Responses of Olive Flounder (Paralichthys olivaceus) to Salinity Changes (염분변화에 따른 넙치(Paralichthys olivaceus)의 스트레스 반응)

  • Park, Hyung-Jun;Min, Byung-Hwa
    • Korean Journal of Ichthyology
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • We tried to determine the optimum salinity for a cultured of olive flounder (Paralichthys olivaceus) by investigating after exposing the fish at different salinity (10, 15, 20 and 25 psu) for 24 and 48 hours compared with control group (fish before transfer to experimental tank). As a control groups, we compared an analyzed with other experimental groups using olive flounder in natural sea water. Hematological parameters including hematocrit (Ht) and hemoglobin (Hb), cortisol and glucose, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), $NH_3$, osmolality, total protein (TP), $Na^+$, $K^+$ and $Cl^-$ mostly exhibited significant changes at 10 and 15 psu groups compared with control groups for 24 and 48 hours exposed. Plasma SOD (superoxide dismutase) and CAT (catalase) activity also increased with experimental groups (10 and 15 psu) compared to the control groups. The expression of HSP70 mRNA was also higher at low-salinity (10 and 15 psu) than at control group. In particular, after 24 hours exposed, it expression to 15 psu groups showed a significant difference compared to the control group. However, after 48 hours exposed, it expression was higher in the 10 psu groups than the control. It is assumed that the changes in the hematological responses and hormone, homeostasis and metabolism were resulted in to protect fish body from stress. Based on these results, we are expected that it will be used as basic data for the culture of olive flounder prepared for low salinity.

Anticancer Effect of Erythronium japonicum Extract on ICR Mouse and L1210 Cells with Alteration of Antioxidant Enzyme Activities (얼레지 추출물의 ICR 마우스와 L1210 암세포에 대한 항암작용과 그에 따른 항산화효소 활성변화)

  • Shin, Yoo-Jin;Jung, Dae-Young;Ha, Hye-Kyung;Park, Sie-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.968-973
    • /
    • 2004
  • Effects of Erythronium japonicum methanol extract on ICR mouse with induced abdominal cancer and L1210 cells were studied. Administration of methanol extract ($10-100\;{\mu}g/20\;g$ body weight) prolonged life by 47.8% and decreased number of L1210 cells with $IC_{50}\;of\;54.6\;{\mu}g/mL$ after 3 days culture, whereas little effect was observed against normal lymphocytes (<6% compared to 83.2% of L1210 cells under the same condition). Increased SOD and GPx enzyme activities, and remarkably augmented generation of ${O_2}^-$ ion in L1210 cells by E. japonicum extract, implied that reactive oxygen species including ${O_2}^-$ ion, might have participated in L1210 cell death

Physiochemical Properties, and Antioxidative and Alcohol-metabolizing Enzyme Activities of Nectarine Vinegar (천도복숭아 식초의 이화학적 특성과 항산화 및 알코올 대사 효소 활성)

  • Jung, Kyung Im;Jung, Han Nah;Ha, Na Yeon;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1193-1200
    • /
    • 2018
  • This study investigated the physiochemical properties, antioxidative, nitrite-scavenging, and alcohol metabolism enzyme activities of nectarine vinegar prepared by a traditional fermentation method. The pH of nectarine vinegar was 3.70, the sugar content was $8.87^{\circ}Brix$, and the total acidity was 6.29%. Among organic acids detected, acetic acid was highest at 32.42 mg/ml, followed by lactic acid, malic acid, and succinic acid. Total phenol content of the nectarine vinegar was $121.84{\mu}g$ tannic acid equivalents (TAE)/100 ml. The antioxidative effects of muskmelon vinegar were measured using 1,1-Diphenyl2-picrylhydrazy (DPPH) radical-scavenging activity and superoxide dismutase (SOD) assay. DPPH of nectarine vinegar was increased in a dose-dependent manner, which was 84.47% at 40% concentration. SOD activity was increased in a dose-dependent manner, which was 89.06% at 60% concentration. Nitric scavenging activities of nectarine vinegar were 94.17%, 76.91%, and 20.21% at pH values 1.2, 3.0, and 6.0 at 100% concentration, respectively. The effects of nectarine vinegar on alcohol-metabolism were determined by measuring the generation of reduced nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). ADH and ALDH activities of nectarine vinegar were increased in a dose-dependent manner, which were 153.61% and 178.20 % at 60% concentration, respectively. These results suggest that nectarine vinegar has great potential as a resource for high quality functional health beverages.