• 제목/요약/키워드: Socket Shape Design

검색결과 8건 처리시간 0.022초

유한요소법을 이용한 고압유압펌프용 오목형 피스톤 조립체의 소켓 형상 설계 (Finite Element Approach to Socket Shape Design of a Concave Piston Assembly for a High Pressure Hydraulic Pump)

  • 엄재근;이민철;최인수;조유종;전만수
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1433-1438
    • /
    • 2006
  • A systematic approach to socket shape design of a concave piston assembly for a high pressure hydraulic pump of an excavator is presented in this paper. A design model is given and a methodology of socket shape design is proposed. An axisymmetric rigid-plastic finite element method is employed for predicting the approximate socket shape formed by a rotary forming process as well as for simulating the test process for separating the shoe from the piston assembly designed. It is verified that the predictions are in good agreement with the experiments. The approach is successfully applied to developing an optimal concave piston assembly.

유한요소법을 이용한 고압유압펌프용 오목형 피스톤 조립체의 소켓 형상 설계 (Finite Element Approach to Socket Shape Design of a Concave Piston Assembly for a High Pressure Hydraulic Pump)

  • 엄재근;이민철;최인수;전만수;조유종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.403-404
    • /
    • 2006
  • A finite-element based approach to socket shape design of a concave piston assembly for a high pressure hydraulic pump of an excavator is presented in this paper. The approach is applied to developing a concave piston assembly which fulfills its strength requirement and it is verified that the predictions are in good agreement with the experiments.

  • PDF

Relationships Between the Transfemoral Socket Interface Pressure and Myoelectric Signal of Residual Limb During Gait

  • Hong, J.H.;Lee, J.Y.;Chu, J.U.;Lee, J.Y.;Mun, M.S.
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1070-1073
    • /
    • 2002
  • The biomechanical interaction between the stump and the prosthetic socket is critically important to achieve close-to-normal ambulation. Many investigators suggested that the pressure changes during gait of transfemoral amputees are closely related to the prosthetic alignment, the socket shape, the stump size, and the residual muscle activity. The effects of the prosthetic alignment, the socket shape, and the stump size on the interface pressure were investigated previously. However, there is no report how the residual muscle activities in the transfemoral stump affect the socket interface pressure characteristics during gait. Since designs of socket fur lower limb amputees need to consider the socket interface pressure characteristics, the interface pressure patterns by the residual muscle activities during gait should be investigated. In this study, myoelectric signals (MES) and socket interface pressure in residual limb of transfemoral amputees were measured during the stance and swing phases of gait. For the purpose, specially designed quadrilateral sockets that MES electrodes could be instrumented were fabricated. A total of two transfemoral amputees were participated in the experiments. The measured temporal MES amplitude and interface pressure in knee flexor (biceps femoris) and extensor (rectus femoris) had significant correlations (P < 0.05). Based on the test results, It was suggested that the residual muscle activity of transfemoral amputees stump is an important factor affecting socket pressure changes during walk.

  • PDF

자동차 조향장치용 소???R의 온간단조 공정 설계를 위한 3차원 유한요소해석 (3D FEM Analysis of Warm Forging Process Design for Socket at Automotive Steering Unit)

  • 이영선;이정환;이준용;배명한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.186-189
    • /
    • 2001
  • In keeping with the needs of the times for energy and labor saving and simplifying production processes, interests has been growing in warm forging. Moreover, it is interested in increasing the material usage and production amounts. To improve the productivity and material usage, it is studied the process design of warm forging for socket. Until now, socket is manufactured by hot forging in hammer. The percentage of material usage is under $60\%$ in hammer forging. On the other han4 the percentage can be increased over $90\%$ in warm forging. To change the process from hot forging to warm forging, process designs must be performed. In this time, by using the FEM package, DEFORM-3D, we could get the shape of 1st process and minimum sealing pressure. They are very essential design data to decrease the trial and error. Practically, the overlap defect could be detected and eliminated with design modification of rib height and fillet radius. Moreover, forging load and minimum sealing pressure was defined by the 3D FEM analysis.

  • PDF

볼조인트 소켓 단조 공정의 예비형상 설계 (Design of Preform in the Forging Process of the Ball-Joint Socket)

  • 박철현;이석렬;신현기;양동열;박용복;안병기;김용환;배명환;정순철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.224-227
    • /
    • 2001
  • The preform design in metal forging plays a key role in improving product quality, such as ensuring defect-free property and proper metal flow. In industry, preforms are generally designed by the iterative trial-and-error approach, but this approach leads not only to significant tool cost but also to the down-time of the production equipment. It is thus necessary to reduce the time and the man-power through an effective method of perform design. In this paper, the equi-potential lines designed in the electric field are introduced to find the preform shape. The equi-potential lines obtained by the arrangement of the initial and final shapes are utilized for the design of the preform, and then applied for obtaining a fine preform in the foging process of the ball-joint socket.

  • PDF

타원형 다단 딥 드로잉 제품의 성형성 향상을 위한 초기 소재 형상 최적 설계 (Optimization of Initial Blank Shape of Multi-stage Deep Drawing for Improvement of Formability)

  • 이사랑;박상민;홍석무
    • 한국산학기술학회논문지
    • /
    • 제17권10호
    • /
    • pp.696-701
    • /
    • 2016
  • 다단계 딥 드로잉(multi-stage deep drawing)은 산업현장에서 대형의 금속 제품 뿐만 아니라 소형의 제품에 까지 많은 제품으로 확대되고 있는 제조 공정 중 하나이다. 예를 들어, 스마트 폰에 사용되는 USB-C형 소켓은 매우 작고, 정밀하며 세장비가 큰 부품이며, 이 제품은 타원형 다단계 딥드로잉 방법으로 제조된다. 다단계 딥 드로잉에 최종 제품의 두께 분포를 보장하기 위해서 다단계 딥드로잉 전체 공정에서 제품의 두께 분포가 균일하게 유지되어야 한다. 따라서 첫 번째 드로잉 작업 후에 타원형 제품의 장변과 단변쪽 측벽의 높이 차를 최소화하는 것은 최종 제품의 균일한 두께를 보장하는 가장 중요한 공정 설계 인자이다. 본 연구에서는 첫 번째 드로잉 공정 후 소재가 균일한 높이를 지속적으로 유지될 수 있도록 하기 위해서 유한요소해석을 기반으로 초기의 타원형 소재 형상 결정에 대한 최적 설계를 수행하였다. 최적 설계된 초기 블랭크 형상으로 성형된 제품의 경우 전체 균일한 두께 분포를 가질 뿐만 아니라 드로잉 후 제품의 장변과 단변의 높이 단차가 최소화 되었다. 최종적으로 최적 설계로 예측된 초기 소재 형상은 실제 실험 결과와 비교하여 검증되었고, 매우 양호한 결과의 일치를 보여주었다.

Use of elevator instruments when luxating and extracting teeth in dentistry: clinical techniques

  • Mamoun, John
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제43권3호
    • /
    • pp.204-211
    • /
    • 2017
  • In dentistry, elevator instruments are used to luxate teeth, and this technique imparts forces to tooth particles that sever the periodontal ligament around tooth roots inside the socket and expand alveolar bone around tooth particles. These effects can result in extraction of the tooth particles or facilitate systematic forceps extraction of the tooth particles. This article presents basic oral surgery techniques for applying elevators to luxate teeth. Determination of the optimal luxation technique requires understanding of the functions of the straight elevator and the Cryer elevator, the concept of purchase points, how the design elements of elevator working ends and tips influence the functionality of an elevator, application of forces to tooth particles, sectioning teeth at furcations, and bone removal to facilitate luxation. The effectiveness of tooth particle luxation is influenced by elevator tip shape and size, the magnitude and the vectors of forces applied to the tooth particle by the tip, and sectioning and bone removal within the operating field. Controlled extraction procedures are facilitated by a dental operating microscope or the magnification of binocular surgical loupes telescopes, combined with co-axial illumination.

맞춤형 인공관절 설계를 위한 인체 고관절의 3차원 형상 정보 추출 (Extracting 3D Geometry Parameters of Hip Joint for Designing a Custom-Made Hip Implant)

  • 서정우;전용태
    • 한국CDE학회논문집
    • /
    • 제13권3호
    • /
    • pp.200-208
    • /
    • 2008
  • Total Hip Replacement(THR) is a surgical procedure that replaces a diseased hip joint with a prosthesis. A plastic or metal cup forms the socket, and the head of the femur is replaced by a metal ball on a stem placed inside the femur. Due to the various types and shapes of human hip joint of every individual, a selected commercial implant sometimes may not be the best-fit to a patient, or it cannot be applied because of its discrepancy. Hence extracting geometry parameters of hip joint is one of the most crucial processes in designing custom-made implants. This paper describes the framework of a methodology to extract the geometric parameters of the hip joint. The parameters include anatomical axis, femoral head, head offset length, femoral neck, neck shaft angle, anteversion, acetabulum, and canal flare index. The proposed system automatically recommends the size and shape of a custom-made hip implant with respect to the patient's individual anatomy from 3D models of hip structures. The proposed procedure creating these custom-made implants with some typical examples is precisely presented and discussed in this paper.