• Title/Summary/Keyword: Socio-hydrology

Search Result 7, Processing Time 0.021 seconds

Developing a common socio-hydrological model based on the value-belief-norm theory

  • Akshita krithi Sobbhun;Hanseok Jeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.431-431
    • /
    • 2023
  • In recent decades, the socio-hydrology community has developed several socio-hydrological frameworks to understand the complexity of the coupled human-water system. Although there have been efforts to relate sociology and hydrology, there still have been some insights that remain debatable. As for this study, the Value-belief-norm theory was used to represent the human behavior in order to connect the human-water system. The theoretical framework of values, beliefs and norms was developed to understand the human culture towards the environment. In addition to the theory, norms are legislation of human behavior in the society while the values are the guiding principle to motivate beliefs and norms. The overview of this study implied on developing a socio-hydrological model consisting of the four systems defined as hydrology, socio-economy, technology and institutional. The interconnectors between the four systems are the key variables and parameters representing a module namely the causal loop diagram. Moreover, water quality, size of population, infrastructure capacity and norms are the key variables to connect the four systems. The developed model will be applied to Han River to represent the coevolutionary of the dynamics of human-water systems.

  • PDF

An interaction between flood and economy on socio-hydrology perspective -Case study for Yangjae River- (사회수문학적 관점에서 홍수-경제-지역사회 상호작용 -양재천 사례를 중심으로-)

  • Kang, Subin;Kim, Jin-Young;Lee, Sangeun;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.509-522
    • /
    • 2021
  • In many countries, including Korea, it has been challenging to understand flood-related social dynamics due to urbanization and climate change. In this regard, socio-hydrology has been proposed to consider the interaction between hydrologic systems, land-use change, and human activities. However, there is a general lack of understanding of the interactions of socio-hydrologicsystems. This study examines the interactions between human activities and hydrologic systems from a sociological perspective using a dynamic system model. In other words, this study aims to present a conceptualization model that considers the mutual interaction of flood and community from a socio-hydrologic perspective. Depending on the construction cost of the levee for the Yangjae River, this study considered three scenarios to simulate the interaction of socio-hydrologic systems. Socio-hydrologic interactions can effectively reproduce the changes in the Yangjae River. Moreover, It is expected that the proposed model can be further used to understand possible hydrologic changes and interaction with social systems in the future as a decision-making tool in water resources management.

Climate Change Concerns in Mongolia

  • Dagvadorj, D.;Gomboluudev, P.;Natsagdorj, L.
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.47-54
    • /
    • 2003
  • Climate of Mongolia is a driven force on natural conditions as well as socio-economic development of the country. Due to the precariousness of climate conditions and traditional economic structure, natural disasters, specially disasters of meteorological and hydrological origin, have substantial effect upon the natural resources and socio-economic sectors of Mongolia. Mongolia's climate is characterized by high variability of weather parameters, and high frequency and magnitude of extreme climate and weather events. During the last few decades, climate of the country is changing significantly under the global warning. The annual mean air temperature for the whole territory of the country has increased by $1.56^{\circ}C$ during the last 60 years,. The winter temperature has increased by $1.56^{\circ}C$. These changes in temperature are spatially variable: winter warming is more pronounced in the high mountains and wide valleys between the mountains, and less so in the steppe and Gobi regions. There is a slight trend of increased precipitation during the last 60 years. The average precipitation rate is increased during 1940-1998 by 6%. This trend is not seasonally consistent: while summer precipitation increased by 11 %, spring precipitation decreased by 17. The climate change studies in Mongolia show that climate change will have a significant impact on natural resources such as water resources, natural rangeland, land use, snow cover, permafrost as well as major economic activities of arable farming, livestock, and society (i.e. human health, living standards, etc.) of Mongolia. Therefore, in new century, sustainable development of the country is defined by mitigating and adaptation policies of climate change. The objective of the presentation is to contribute one's idea in the how to reflect the changes in climate system and weather extreme events in the country's sustainable development concept.

  • PDF

Development of Socio-Hydrology Model for a Dynamic Interaction of Flood-Economy-Infrastructure (홍수-경제-기반시설의 동적 상호작용 평가를 위한 사회수문학적 모형 개발)

  • Kang, Subin;Kim, Yong-Tak;Woo, Sangseon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.322-322
    • /
    • 2021
  • 유역에서 나타나는 수문학적인 작용과 사회가 이에 대응하는 과정에서 발생하는 사회수문학적 상호작용을 이해하고자 하는 연구가 지속적으로 진행되고 있으나, 주로 개념적으로 정성적인 분석에 그치고 있다. 본 연구에서는 홍수-경제-기반시설로 구성되는 시스템의 동적거동을 정량적으로 평가하기 위하여 미분방정식 기반의 동적해석시스템을 제시하고 이를 수치해석적으로 해석할 수 있는 방안을 제시하였다. 즉, 제내지에서 인간의 활동, 제내지에서 거주지 확장 및 쇠퇴 등 사회수문학적 관점에서 인문 시스템과 수문 시스템 사이 상호작용을 연구하고 범람원의 동적 변화에 미치는 영향의 개념화 모형과 함께 수치해석적 접근 방법을 제시하였다. 양재천 사례를 중심으로 사회기반시설로서 제방을 고려하였으며, 제방에 투자되는 비용에 따라 세 가지 시나리오로 나눠 양재천의 홍수위험도와 지역사회의 사회수문학적 변화를 모의하였다. 본 연구 방법과 결과로 사회수문학 연구의 중요성을 보여줌으로써 추후 사회수문학의 연구 방향성을 제시하고자 한다.

  • PDF

A Review of Open Modeling Platform Towards Integrated Water Environmental Management (통합 물환경 관리를 위한 개방형 모델링 플랫폼 고찰)

  • Lee, Sunghack;Shin, Changmin;Lee, Yongseok;Cho, Jaepil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.636-650
    • /
    • 2020
  • A modeling system that can consider the overall water environment and be used to integrate hydrology, water quality, and aquatic ecosystem on a watershed scale is essential to support decision-making in integrated water resources management (IWRM). In adapting imported models for evaluating the unique water environment in Korea, a platform perspective is becoming increasingly important. In this study, a modeling platform is defined as an ecosystem that continuously grows and provides sustainable values through voluntary participation- and interaction-of all stakeholders- not only experts related to model development, but also model users and decision-makers. We assessed the conceptual values provided by the IWRM modeling platform in terms of openness, transparency, scalability, and sustainability. I We also reviewed the technical aspects of functional and spatial integrations in terms of socio-economic factors and user-centered multi-scale climate-forecast information. Based on those conceptual and technical aspects, we evaluated potential modeling platforms such as Source, FREEWAT, Object Modeling System (OMS), OpenMI, Community Surface-Dynamics Modeling System (CSDMS), and HydroShare. Among them, CSDMS most closely approached the values suggested in model development and offered a basic standard for easy integration of existing models using different program languages. HydroShare showed potential for sharing modeling results with the transparency expected by model user-s. Therefore, we believe that can be used as a reference in development of a modeling platform appropriate for managing the unique integrated water environment in Korea.

Analysis of Inundation Area in the Agricultural Land under Climate Change through Coupled Modeling for Upstream and Downstream (상·하류 연계 모의를 통한 기후변화에 따른 농경지 침수면적 변화 분석)

  • Park, Seongjae;Kwak, Jihye;Kim, Jihye;Kim, Seokhyeon;Lee, Hyunji;Kim, Sinae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.49-66
    • /
    • 2024
  • Extreme rainfall will become intense due to climate change, increasing inundation risk to agricultural land. Hydrological and hydraulic simulations for the entire watershed were conducted to analyze the impact of climate change. Rainfall data was collected based on past weather observation and SSP (Shared Socio-economic Pathway)5-8.5 climate change scenarios. Simulation for flood volume, reservoir operation, river level, and inundation of agricultural land was conducted through K-HAS (KRC Hydraulics & Hydrology Analysis System) and HEC-RAS (Hydrologic Engineering Center - River Analysis System). Various scenarios were selected, encompassing different periods of rainfall data, including the observed period (1973-2022), near-term future (2021-2050), mid-term future (2051-2080), and long-term future (2081-2100), in addition to probabilistic precipitation events with return periods of 20 years and 100 years. The inundation area of the Aho-Buin district was visualized through GIS (Geographic Information System) based on the results of the flooding analysis. The probabilistic precipitation of climate change scenarios was calculated higher than that of past observations, which affected the increase in reservoir inflow, river level, inundation time, and inundation area. The inundation area and inundation time were higher in the 100-year frequency. Inundation risk was high in the order of long-term future, near-term future, mid-term future, and observed period. It was also shown that the Aho and Buin districts were vulnerable to inundation. These results are expected to be used as fundamental data for assessing the risk of flooding for agricultural land and downstream watersheds under climate change, guiding drainage improvement projects, and making flood risk maps.