• Title/Summary/Keyword: Social Media Text

Search Result 350, Processing Time 0.02 seconds

The Effects of Social Media Advertising on Social Search in China: Evidence from Luxury Brand

  • GAO, XING;Kim, Sang Yong;Kim, Da Yeon;Lee, Seung Min
    • Asia Marketing Journal
    • /
    • v.21 no.3
    • /
    • pp.65-82
    • /
    • 2019
  • This study examines the relationship between social media advertisement and customer interest in the context of luxury brands. Further, this study investigates the effective ways to utilize visual types (pictorial advertisement and video advertisement) and contents types (website link and hash-tag) in social media advertising by proposing a time-series model to estimate the long-term effect of social media advertising on social search. We find that the pictorial advertisements are more effective than video advertisements, which provides a different result from previous existing research. In addition, advertisements using hashtags are more effective than web links due to efficiency of the search feature. Finally, since the number of brand fans also have a positive effect on advertising interest, it is essential to utilize social media advertising for the enhancement of customers' interests. Confirming that the effectiveness of social media advertising varies depending on how the visual contents and text are presented, this research can help marketing managers to assess predicted outcomes of using various methods of social media advertising.

Application Development for Text Mining: KoALA (텍스트 마이닝 통합 애플리케이션 개발: KoALA)

  • Byeong-Jin Jeon;Yoon-Jin Choi;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.21 no.2
    • /
    • pp.117-137
    • /
    • 2019
  • In the Big Data era, data science has become popular with the production of numerous data in various domains, and the power of data has become a competitive power. There is a growing interest in unstructured data, which accounts for more than 80% of the world's data. Along with the everyday use of social media, most of the unstructured data is in the form of text data and plays an important role in various areas such as marketing, finance, and distribution. However, text mining using social media is difficult to access and difficult to use compared to data mining using numerical data. Thus, this study aims to develop Korean Natural Language Application (KoALA) as an integrated application for easy and handy social media text mining without relying on programming language or high-level hardware or solution. KoALA is a specialized application for social media text mining. It is an integrated application that can analyze both Korean and English. KoALA handles the entire process from data collection to preprocessing, analysis and visualization. This paper describes the process of designing, implementing, and applying KoALA applications using the design science methodology. Lastly, we will discuss practical use of KoALA through a block-chain business case. Through this paper, we hope to popularize social media text mining and utilize it for practical and academic use in various domains.

Social media big data analysis of Z-generation fashion (Z세대 패션에 대한 소셜미디어의 빅데이터 분석)

  • Sung, Kwang-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.22 no.3
    • /
    • pp.49-61
    • /
    • 2020
  • This study analyzed the social media accounts and performed a Big Data analysis of Z-generation fashion using Textom Text Mining Techniques program and Ucinet Big Data analysis program. The research results are as follows: First, as a result of keyword analysis on 67.646 Z-generation fashion social media posts over the last 5 years, 220,211 keywords were extracted. Among them, 67 major keywords were selected based on the frequency of co-occurrence being greater than more than 250 times. As the top keywords appearing over 1000 times, were the most influential as the number of nodes connected to 'Z generation' (29595 times) are overwhelmingly, and was followed by 'millennials'(18536 times), 'fashion'(17836 times), and 'generation'(13055 times), 'brand'(8325 times) and 'trend'(7310 times) Second, as a result of the analysis of Network Degree Centrality between the key keywords for the Z-generation, the number of nodes connected to the "Z-generation" (29595 times) is overwhelmingly large. Next, many 'millennial'(18536 times), 'fashion'(17836 times), 'generation'(13055 times), 'brand'(8325 times), 'trend'(7310 times), etc. appear. These texts are considered to be important factors in exploring the reaction of social media to the Z-generation. Third, through the analysis of CONCOR, text with the structural equivalence between major keywords for Gen Z fashion was rearranged and clustered. In addition, four clusters were derived by grouping through network semantic network visualization. Group 1 is 54 texts, 'Diverse Characteristics of Z-Generation Fashion Consumers', Group 2 is 7 Texts, 'Z-Generation's teenagers Fashion Powers', Group 3 is 8 Texts, 'Z-Generation's Celebrity Fashions' Interest and Fashion', Group 4 named 'Gucci', the most popular luxury fashion of the Z-generation as one text.

Perceived Social Presence in the Text-Based Media: Mobile Communication Case (문자기반 매체에서 느끼는 사회적 현존감: 모바일 커뮤니케이션의 사례)

  • Lee, Hae-Kyung;Lee, Hyejung;Lee, Jungwoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.1
    • /
    • pp.164-174
    • /
    • 2013
  • Since the advent of smart phone, a variety of text-based media are developed and used as popular communication tools even in mobile phone environment. This study explores differences in terms of users' perceived social presence level across different text-based media, specifically KakaoTalk, Facebook, SMS. A survey was conducted using items adopted from previous studies on social presence. 203 data points were collected and used for analysis. Across the whole sample, KakaoTalk is perceived as the highest in terms of perceived social presence level, followed by Facebook and SMS. Also, the users with higher level of sociality tends to reveal higher level of perceived social presence across all the media while younger and/or student users tend to maintain higher level of social presence perception across all the media. Further studies seem necessary investigating features of specific medium that may increase or decrease the perceived level of social presence.

Online Social Media Review Mining for Living Items with Probabilistic Approach: A Case Study

  • Li, Shuai;Hao, Fei;Kim, Hee-Cheol
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.20-27
    • /
    • 2013
  • The concept of social media is top of the agenda for many business executives and decision makers, as well as consultants try to identify ways where companies can make profitable use of applications such as Netflix, Flixster. The social media is playing an increasingly important role as the information sources for customers making product choices etc. With the flourish of Web 2.0 technology, customer reviews are becoming more and more useful and important information resources for people to save their time and energy on purchasing products that they want. This paper proposes the Bayesian Probabilistic Classification algorithm to mine the social media review, and evaluates it by different splits and cross validation mechanism from the real data set. The explored study experimental results show the robustness and effectiveness of proposed approach for mining the social media review.

  • PDF

Text Mining in Online Social Networks: A Systematic Review

  • Alhazmi, Huda N
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.396-404
    • /
    • 2022
  • Online social networks contain a large amount of data that can be converted into valuable and insightful information. Text mining approaches allow exploring large-scale data efficiently. Therefore, this study reviews the recent literature on text mining in online social networks in a way that produces valid and valuable knowledge for further research. The review identifies text mining techniques used in social networking, the data used, tools, and the challenges. Research questions were formulated, then search strategy and selection criteria were defined, followed by the analysis of each paper to extract the data relevant to the research questions. The result shows that the most social media platforms used as a source of the data are Twitter and Facebook. The most common text mining technique were sentiment analysis and topic modeling. Classification and clustering were the most common approaches applied by the studies. The challenges include the need for processing with huge volumes of data, the noise, and the dynamic of the data. The study explores the recent development in text mining approaches in social networking by providing state and general view of work done in this research area.

Empirical Analysis on the Effect of Design Pattern of Web Page, Perceived Risk and Media Richness to Customer Satisfaction (콘텐츠 제작방식, 지각된 위험, 미디어 풍부성이 고객만족에 미치는 영향 분석)

  • Park, Bong-Won;Lee, Jung-Mann;Lee, Jong-Won
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.385-396
    • /
    • 2011
  • Internet web pages can be classified by three major types such as texts only, images with texts and videos with texts. The purpose of this paper is to analyze how customers recognize and respond perspective of perceived risk and media richness with regard to design patterns of internet web pages. Additionally, we will examine the extent to which aforementioned factors affect customer satisfaction. Analyses with perceived risks revealed that customers feel less personal risks including performance, psychology and time/convenience when used web pages of text-images and text-videos, compared to text only based web pages. However, customers feel that web pages consisting of image-text or video-text have higher points in terms of symbolism and social presence in media richness, compared to text only based web pages. Finally, we showed that personal risk and text-based Web page negatively affect but symbolism and social presence positively impact on customer satisfaction. Therefore, this study suggests a clue that why video-based Web content did not grow different from many people's expectation.

Social Media Marketing Strategy

  • Nam, Jeongjung;Kang, Min Jung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.219-223
    • /
    • 2022
  • The Internet can deliver various information and services at the lowest cost without time and space constraints while targeting the world among all existing means of communication. Unlike traditional media such as TV, newspapers, and radio in the past, promotions through mobile environments allow target customers to use two-way low-cost, high-efficiency promotional strategies regardless of time and place. With the development of the Internet, social media has developed into a place to acquire information about favorite companies and their products. Social media greatly contributes to the production of text, photos, videos, and various networks, and has expanded global communication and communication media through the interaction and sharing of various information. In addition, through social media, users can communicate in various ways, reveal themselves, and share and exchange information such as knowledge and personal thoughts. In line with these changes, corporate marketers and sellers are striving to provide consumers with appropriate information more quickly. We aims to find out about social media marketing strategies useful for companies.

Safeguarding Korean Export Trade through Social Media-Driven Risk Identification and Characterization

  • Sithipolvanichgul, Juthamon;Abrahams, Alan S.;Goldberg, David M.;Zaman, Nohel;Baghersad, Milad;Nasri, Leila;Ractham, Peter
    • Journal of Korea Trade
    • /
    • v.24 no.8
    • /
    • pp.39-62
    • /
    • 2020
  • Purpose - Korean exports account for a vast proportion of Korean GDP, and large volumes of Korean products are sold in the United States. Identifying and characterizing actual and potential product hazards related to Korean products is critical to safeguard Korean export trade, as severe quality issues can impair Korea's reputation and reduce global consumer confidence in Korean products. In this study, we develop country-of-origin-based product risk analysis methods for social media with a specific focus on Korean-labeled products, for the purpose of safeguarding Korean export trade. Design/methodology - We employed two social media datasets containing consumer-generated product reviews. Sentiment analysis is a popular text mining technique used to quantify the type and amount of emotion that is expressed in the text. It is a useful tool for gathering customer opinions regarding products. Findings - We document and discuss the specific potential risks found in Korean-labeled products and explain their implications for safeguarding Korean export trade. Finally, we analyze the false positive matches that arise from the established dictionaries that were used for risk discovery and utilize these classification errors to suggest opportunities for the future refinement of the associated automated text analytic methods. Originality/value - Various studies have used online feedback from social media to analyze product defects. However, none of them links their findings to trade promotion and the protection of a specific country's exports. Therefore, it is important to fill this research gap, which could help to safeguard export trade in Korea.

Building a Korean Text Summarization Dataset Using News Articles of Social Media (신문기사와 소셜 미디어를 활용한 한국어 문서요약 데이터 구축)

  • Lee, Gyoung Ho;Park, Yo-Han;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.8
    • /
    • pp.251-258
    • /
    • 2020
  • A training dataset for text summarization consists of pairs of a document and its summary. As conventional approaches to building text summarization dataset are human labor intensive, it is not easy to construct large datasets for text summarization. A collection of news articles is one of the most popular resources for text summarization because it is easily accessible, large-scale and high-quality text. From social media news services, we can collect not only headlines and subheads of news articles but also summary descriptions that human editors write about the news articles. Approximately 425,000 pairs of news articles and their summaries are collected from social media. We implemented an automatic extractive summarizer and trained it on the dataset. The performance of the summarizer is compared with unsupervised models. The summarizer achieved better results than unsupervised models in terms of ROUGE score.