최근 소셜 미디어의 성장과 디지털 기기의 활용이 증가함에 따라 데이터가 기하급수적으로 급증하고 있다. 이러한 대용량의 데이터를 효율적으로 처리하기 위해 분산 메모리 처리 시스템을 사용한다. 하지만 분산 환경에서 특정 노드에 부하가 집중이 되면 노드의 성능이 저하되는 문제가 발생한다. 본 논문은 분산 메모리 환경에서 노드의 부하를 적절하게 분배하는 부하 분산 기법을 제안한다. 제안하는 기법은 노드의 부하를 관리하기 위해 핫 데이터를 여러 노드에 복제하고 노드가 추가되거나 삭제될 때 노드의 부하를 고려하여 데이터를 이주시킨다. 클라이언트는 핫 데이터의 메타데이터 정보를 유지하여 직접 노드에 접근함으로써 중앙 서버의 접근을 감소시킨다. 성능 평가를 통해 제안하는 부하 분산 관리 기법이 기존에 캐시 관리 기법에 비해 우수함을 입증한다.
최근 소셜 미디어의 성장과 디지털 기기의 활용이 증가함에 따라 기하급수적으로 데이터가 급증하고 있다. 기존 디스크 기반 분산 파일 시스템은 I/O 처리 비용 및 병목 현상으로 인해 데이터 처리나 데이터 접근 성능에 한계가 발생한다. 이러한 문제점을 해결하기 위해 메모리에 데이터를 관리하는 캐시 기법이 활용되고 있다. 본 논문에서는 분산 메모리 환경에서 부하 분산을 처리하기 위한 캐시 관리 기법을 제안한다. 제안하는 기법은 노드의 메모리의 크기가 서로 상이한 환경에서 메모리 크기에 따라 데이터를 분배하고 노드의 부하가 발생할 경우 핫 데이터를 재분배한다. 또한, 캐시 항목의 재사용 가능성, 사용 빈도수, 접근 시간을 고려한 캐시 교체 기법을 제안한다. 성능 평가를 통해 제안하는 분산 캐시 기법이 기존에 캐시 관리 기법에 비해 우수함을 입증한다.
소셜 정보망의 발달로 마케팅의 방법도 다양하게 변화되고 있다. 기존의 유명인, 경제적 지원 기반의 성공적인 마케팅방법론과 달리, 최근 인플루언서 기반 유튜브 마케팅이 큰 대세를 이루고 있다. 본 논문 에서는 처음으로 유튜브 양적 정보 및 댓글분석 기반 다각도 질적 분석을 활용하여 54개 이상의 유튜브 채널에서 인플루언서 특징을 추출하고 대표적인 주제들을 모델링하여 개인 맞춤형 영상 만족도 극대화는 물론 기업체가 새로운 아이템을 마케팅 할 때 기존의 인플루언서 특징을 참고하여 새로운 아이템의 영상을 제작하고 배포함으로써 성공적인 홍보 효과를 누릴 수 있도록 보조 수단 제공을 목적으로 한다. 유튜브 채널 별 다양한 영상의 모든 댓글을 각 문서로 가정하고 TF-IDF 및 LDA알고리즘을 적용하여 성능 극대화 향상을 보였다.
Regulatory sentiment refers to the market's subjective evaluation of regulatory reform and is one of the most widely adopted indicators to those charged with implementing and diagnosing regulatory policies. The use of regulatory sentiment in advanced analysis has become universal, albeit it is often limited due to difficulties in articulating consistent and objective quantitative indicators that can meticulously reflect market sentiment overall. Thus, despite ample effort by scholars to read the economic impact of regulatory sentiment in the real economy, causal links are difficult to spot. To fill this gap in the literature, this study analyzes a regulatory sentiment index and economic performance indicators through a text analysis approach and by inspecting diverse tones in media articles. Using different stages of tests, the paper identifies a causal relationship between regulatory sentiment and actual economic activities as measured by private consumption, facility investment, construction investment, gross domestic investment, and employment. Additionally, as a result of analyzing one-unit impulse of regulatory perception, the initial impact on economic growth and private investment was found to be negligible; this was followed by a positive (+) response, after which it converged to zero. Construction investment showed a positive (+) response initially, which then rapidly changed to a negative (-) response and then converged to zero. Gross domestic investment as the initial effect was negligible after showing a positive (+) reaction. Unfortunately, the facility investment outcome was found to be insignificant in the impulse response test. Nevertheless, it can be concluded that it is necessary and important to increase the sensitivity to regulations to promote the economic effectiveness of regulatory reforms. Thus, instead of dealing with policies with the vague goal of merely improving regulatory sentiment, using regulatory sentiment as an indicator of major policies could be an effective approach.
Recently, many studies are being conducted to extract emotion from text and verify its information power in the field of finance, along with the recent development of big data analysis technology. A number of prior studies use pre-defined sentiment dictionaries or machine learning methods to extract sentiment from the financial documents. However, both methods have the disadvantage of being labor-intensive and subjective because it requires a manual sentiment learning process. In this study, we developed a financial sentiment dictionary that automatically extracts sentiment from the body text of analyst reports by using modified Bayes rule and verified the performance of the model through a binary classification model which predicts actual stock price movements. As a result of the prediction, it was found that the proposed financial dictionary from this research has about 4% better predictive power for actual stock price movements than the representative Loughran and McDonald's (2011) financial dictionary. The sentiment extraction method proposed in this study enables efficient and objective judgment because it automatically learns the sentiment of words using both the change in target price and the cumulative abnormal returns. In addition, the dictionary can be easily updated by re-calculating conditional probabilities. The results of this study are expected to be readily expandable and applicable not only to analyst reports, but also to financial field texts such as performance reports, IR reports, press articles, and social media.
The performance of recommender systems (RS) has been measured mainly in terms of accuracy. However, there are other aspects of performance that are difficult to understand in terms of accuracy, such as coverage, serendipity, and satisfaction with recommended results. Moreover, particularly with RSs that suggest multiple items at a time, such as YouTube, user satisfaction with recommended results may vary not only depending on their accuracy, but also on their configuration, content, and design displayed to the user. This is true when classifying an RS as a single RS with one recommended result and as a multiple RS with diverse results. No empirical analysis has been conducted on the influence of the content and distribution of recommendation items on user satisfaction. In this study, we propose a research model representing the content and distribution of recommended items and how they affect user satisfaction with the RS. We focus on RSs that recommend multiple items. We performed an empirical analysis involving 149 YouTube users. The results suggest that user satisfaction with recommended results is significantly affected according to the HHI (Herfindahl-Hirschman Index). In addition, satisfaction significantly increased when the recommended item on the top of the list was the same category in terms of content that users were currently watching. Particularly when the purpose of using RS is hedonic, not utilitarian, the results showed greater satisfaction when the number of views of the recommended items was evenly distributed. However, other characteristics of selected content, such as view count and playback time, had relatively less impact on satisfaction with recommended items. To the best of our knowledge, this study is the first to show that the category concentration of items impacts user satisfaction on websites recommending diverse items in different categories using a content-based filtering system, such as YouTube. In addition, our use of the HHI index, which has been extensively used in economics research, to show the distributional characteristics of recommended items, is also unique. The HHI for categories of recommended items was useful in explaining user satisfaction.
본 논문의 연구목적은 뮤지컬 『All Shook Up』의 새로운 연출적 해석과 해체 과정을 통해 드러나는 수행적 시노그래피의 요소와 그 의미를 논의하는 것이다. 포스트모더니즘 이후 드러나는 수행적 특성은 관객의 적극적인 참여를 통해 개개인의 능동적인 지각과, 다양한 사회적 의미 창발을 목표로 한다. 이를 위해, 시노그래피의 이론적 토대를 시대별로 제시하였다. 이를 토대로 『All Shook Up Travelers』의 수행적 공간 구축을 위한 재구성 과정에서 시노그래피 구성요소 중 무대와 미디어를 중심으로 세분화하여 고찰하였다. 그 결과, 비주얼 내러티브 기반의 세계관 구축을 통해 텍스트를 기반으로 제작한 강렬한 이미지를 배우의 내적서사 확장의 직접적인 매개체로 활용하여 시노그래피의 시각적 강렬함을 달성하였다. 그것들은 배우와 관객들과의 공존-분리를 노정한 극 내부서사의 강화, 양의성을 지닌 독자적인 의미전달, 관객들의 비판적인 사유, 능동적인 지각 등 공감각적 체험을 가능하게 하였다.
최근 소셜 미디어의 숏폼(Short form) 동영상(인스타그램, 틱톡, 유튜브) 시장이 점차 증가하면서 인공지능 영역에서는 이를 활용한 연구가 활발히 진행되고 있다. 대표적인 연구분야로 동영상 내의 패션 상품을 탐지하고 상품 이미지를 검색하는 Video to shop 을 들 수 있다. 이와 같은 동영상 기반 인공지능 모델에서는 Convolution 연산을 사용하여 상품의 특징을 추출한다. 하지만 연산 자원의 제한으로 인해, 동영상의 모든 프레임을 사용하여 특징을 추출하는 것은 현실적으로 불가능하다. 이로 인해, 기존 연구에서는 전체 프레임 중 일부만 샘플링해서 사용하거나, 주제의 특성을 활용한 샘플링 방법을 개발하여 이를 통해 위 문제점을 개선하고, 모델의 성능도 향상시켰다. 기존의 Video to shop 연구에서는 프레임을 샘플링 할 때, 무작위로 일부분의 프레임을 샘플링하거나 균등한 간격으로 샘플링 한다. 하지만 이러한 샘플링 방법은 상품이 존재하지 않는 노이즈 프레임을 샘플링 하면서 패션 상품 검색 모델의 성능을 저하시킨다. 이에 본 연구는 노이즈 프레임을 제거하고 검색 모델의 성능을 향상시키는 샘플링 방법 MF(Missing Fashion items on frame) sampler를 제안한다. MF sampler는 키 프레임 메커니즘(Mechanism)을 발전시켜 자원 한계의 문제점을 개선했다. 또한, 노이즈 탐지 모델을 활용한 노이즈 프레임 제거를 통해 검색 모델의 성능을 향상시켰다. 이와 같은 결과는 실험을 통해 확인되었고, Video to shop 패션 상품 검색에 있어 성능 향상과 효과적인 학습이 가능하다는 것을 확인할 수 있었다.
Purpose - Over recent years, O2O and shared economy have been an eye-catching topic. Many researches on O2O and shared economy have been published gradually. The emerging enterprise of chauffeured car services developed rapidly in the past two years. Therefore, it is necessary to explore the influencing factors of use intention of the chauffeured car services users. Through active use of O2O and shared economy, put up with operation strategy in line with their use intention. Research design, data, and methodology - After collecting 324 respondents in China with questionnaires, this study begin the empirical research with users of Chauffeured Car Services, and analyzes data with IBM SPSS 24.0 and IBM AMOS 24.0. Results - Personal Propensity to Trust significantly affects the Initial Trust of chauffeured car services users. Firm Reputation significantly affects the Initial Trust and use intention of chauffeured car services users. Initial Trust significantly affects the use intention of chauffeured car services users. Performance Expectancy and Effort Expectancy significantly affect chauffeured car services users' use intention. Social Influence also significantly affects the use intention of chauffeured car services users. Conclusions - First, Initial Trust significantly affects the use intention of chauffeured car services users. Thus, the enterprise should make efforts to improve users' initial trust in order to attract their attention. For this reason, chauffeured car services enterprises should conduct questionnaires to deeply explore what needs can improve users' initial trust. Second, performance expectancy and effort expectancy significantly affect chauffeured car services users' use intention. When users enjoy chauffeured car services, they attach great importance to the convenience, simplicity and efficiency, which reflects that chauffeured car services' desire for greater development in the O2O and shared economy market. Therefore, they need to grasp users' needs (convenience, simplicity and efficiency) and carefully improve the quality of chauffeured car services. Finally, social influence also significantly affects the use intention of chauffeured car services users. It means friend recommendation or mass media influences users' intention. So, it is more important to increase differentiated benefits, advertising and publicity of chauffeured car services.
최근 가짜뉴스는 뉴스 콘텐츠 형식을 가장하고 중요한 사건이 발생할 때마다 등장하여 사회적 혼란을 초래한다. 이에 가짜뉴스를 탐지하기 위한 연구로 인공지능 기술이 사용된다. 자연어 처리를 통해 가짜뉴스를 자동으로 인지 및 차단하거나, 네트워크 인과 추론과 결합함으로써 허위 정보를 확산시키는 소셜미디어 인플루언스 계정을 감지하는 등의 가짜뉴스 탐지 접근법이 딥러닝을 통해 구현될 수 있었다. 그러나 가짜뉴스 탐지는 여러 자연어 처리 분야 중에서도 해결이 어려운 문제로 분류된다. 가짜뉴스가 가지는 형식 및 표현의 다양성으로 특성 추출의 난도가 높고, 뉴스가 속한 범주에 따라 하나의 특성이 서로 다른 의미를 가질 수도 있는 등 다양한 한계점이 존재한다. 본 논문에서는 가짜뉴스를 탐지하기 위한 추가적인 식별 기준으로 감성 변화 패턴을 제시한다. 합성곱 신경망을 가짜뉴스 데이터 세트에 적용하여 콘텐츠 특성에 기반한 분석을 수행하고, 감성 변화 패턴을 추가로 분석함으로써 성능이 개선된 모델을 제안한다. 뉴스를 구성하는 문장에 대하여 감성 극성을 산출하고 장단기 메모리를 적용함으로써 문장 순서에 의존적인 결괏값을 얻을 수 있다. 이를 감성 변화의 패턴으로 정의하고 뉴스의 콘텐츠 특성과 결합하여 가짜뉴스 탐지를 위한 제안 모델의 독립변수로 활용한다. 제안 모델과 비교 모델을 딥러닝으로 학습시키고 가짜뉴스 데이터 세트를 이용한 실험을 진행하여 감성 변화 패턴이 가짜뉴스 탐지 성능을 개선할 수 있음을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.