• 제목/요약/키워드: Social Media Mining

검색결과 246건 처리시간 0.03초

소셜미디어 위험도기반 재난이슈 탐지모델 (The Detection Model of Disaster Issues based on the Risk Degree of Social Media Contents)

  • 최선화
    • 한국안전학회지
    • /
    • 제31권6호
    • /
    • pp.121-128
    • /
    • 2016
  • Social Media transformed the mass media based information traffic, and it has become a key resource for finding value in enterprises and public institutions. Particularly, in regards to disaster management, the necessity for public participation policy development through the use of social media is emphasized. National Disaster Management Research Institute developed the Social Big Board, which is a system that monitors social Big Data in real time for purposes of implementing social media disaster management. Social Big Board collects a daily average of 36 million tweets in Korean in real time and automatically filters disaster safety related tweets. The filtered tweets are then automatically categorized into 71 disaster safety types. This real time tweet monitoring system provides various information and insights based on the tweets, such as disaster issues, tweet frequency by region, original tweets, etc. The purpose of using this system is to take advantage of the potential benefits of social media in relations to disaster management. It is a first step towards disaster management that communicates with the people that allows us to hear the voice of the people concerning disaster issues and also understand their emotions at the same time. In this paper, Korean language text mining based Social Big Board will be briefly introduced, and disaster issue detection model, which is key algorithms, will be described. Disaster issues are divided into two categories: potential issues, which refers to abnormal signs prior to disaster events, and occurrence issues, which is a notification of disaster events. The detection models of these two categories are defined and the performance of the models are compared and evaluated.

텍스트 마이닝을 활용한 자율운항선박 분야 주요 이슈 분석 : 국내 뉴스 데이터를 중심으로 (Analysis of major issues in the field of Maritime Autonomous Surface Ships using text mining: focusing on S.Korea news data)

  • 이혜영;김진식;구병수;남문주;장국진;한성원;이주연;정명석
    • 시스템엔지니어링학술지
    • /
    • 제20권spc1호
    • /
    • pp.12-29
    • /
    • 2024
  • The purpose of this study is to identify the social issues discussed in Korea regarding Maritime Autonomous Surface Ships (MASS), the most advanced ICT field in the shipbuilding industry, and to suggest policy implications. In recent years, it has become important to reflect social issues of public interest in the policymaking process. For this reason, an increasing number of studies use media data and social media to identify public opinion. In this study, we collected 2,843 domestic media articles related to MASS from 2017 to 2022, when MASS was officially discussed at the International Maritime Organization, and analyzed them using text mining techniques. Through term frequency-inverse document frequency (TF-IDF) analysis, major keywords such as 'shipbuilding,' 'shipping,' 'US,' and 'HD Hyundai' were derived. For LDA topic modeling, we selected eight topics with the highest coherence score (-2.2) and analyzed the main news for each topic. According to the combined analysis of five years, the topics '1. Technology integration of the shipbuilding industry' and '3. Shipping industry in the post-COVID-19 era' received the most media attention, each accounting for 16%. Conversely, the topic '5. MASS pilotage areas' received the least media attention, accounting for 8 percent. Based on the results of the study, the implications for policy, society, and international security are as follows. First, from a policy perspective, the government should consider the current situation of each industry sector and introduce MASS in stages and carefully, as they will affect the shipbuilding, port, and shipping industries, and a radical introduction may cause various adverse effects. Second, from a social perspective, while the positive aspects of MASS are often reported, there are also negative issues such as cybersecurity issues and the loss of seafarer jobs, which require institutional development and strategic commercialization timing. Third, from a security perspective, MASS are expected to change the paradigm of future maritime warfare, and South Korea is promoting the construction of a maritime unmanned system-based power, but it emphasizes the need for a clear plan and military leadership to secure and develop the technology. This study has academic and policy implications by shedding light on the multidimensional political and social issues of MASS through news data analysis, and suggesting implications from national, regional, strategic, and security perspectives beyond legal and institutional discussions.

A Study on Gamification Consumer Perception Analysis Using Big Data

  • Se-won Jeon;Youn Ju Ahn;Gi-Hwan Ryu
    • International Journal of Advanced Culture Technology
    • /
    • 제11권3호
    • /
    • pp.332-337
    • /
    • 2023
  • The purpose of the study was to analyze consumers' perceptions of gamification. Based on the analyzed data, we would like to provide data by systematically organizing the concept, game elements, and mechanisms of gamification. Recently, gamification can be easily found around medical care, corporate marketing, and education. This study collected keywords from social media portal sites Naver, Daum, and Google from 2018 to 2023 using TEXTOM, a social media analysis tool. In this study, data were analyzed using text mining, semantic network analysis, and CONCOR analysis methods. Based on the collected data, we looked at the relevance and clusters related to gamification. The clusters were divided into a total of four clusters: 'Awareness of Gamification', 'Gamification Program', 'Future Technology of Gamification', and 'Use of Gamification'. Through social media analysis, we want to investigate and identify consumers' perceptions of gamification use, and check market and consumer perceptions to make up for the shortcomings. Through this, we intend to develop a plan to utilize gamification.

텍스트 마이닝을 활용한 ASMR 콘텐츠 분야에 따른 소비자 인식 및 구전효과 차이점 분석: ASMR 제품리뷰 및 ASMR How-to 콘텐츠 중심으로 (The User Perception in ASMR Marketing Content through Social Media Text-Mining: ASMR Product Review Content vs ASMR How-to Content)

  • ;최재원
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권4호
    • /
    • pp.1-20
    • /
    • 2021
  • Purpose Nowadays, Autonomous Sensory Meridian Response (ASMR) is rapidly growing in popularity and increasingly appearing in marketing. Not even in TV commercial advertisement, ASMR also fast growing in one-person media communication, many brands and social media influencers used ASMR for their marketing contents. The purpose of this study is to measure consumers' perceptions about the products in ASMR marketing content and compare the differences in communication effect of ASMR content creator between product review and how-to in the same Macro tier influencer - the YouTuber that has 10,000-100,000 subscribers. Design/methodology/approach The research methods selected ASMRtist that do product review content and how-to content, Text comments data was collected from 200 videos of tech-device review videos and beauty-fashion videos. A total of 52,833 text comments were analyzed by applying the LDA topic modeling algorithm and social network analysis. Findings Through the result, we can know that ASMR is good at taking attention of viewers with ASMR triggers. In the Tech device reviews field, ASMR viewers also focus on the product like product's performance and purchase. However, there are many topics related to reaction of ASMR sound, trigger, relaxation. In the Beauty-fashion field, viewers' topics mainly focus on the reaction of the ASMR trigger, response to ASMRtist and other topics are talking about makeup - fashion, product, purchase. From LDA result, many ASMR viewers comment that they feel more comfortable when watching the marketing content that uses ASMR. This result has shown that ASMR marketing contents have a good performance in terms of user watching experience, so applying ASMR can take more consumer intention. And the result of social network analysis showed that product review ASMRtist have a higher communication effectiveness than how-to ASMRtist in the same tier. As an influencer marketing strategy, this study provides information to establish an efficient advertising strategy by using influencers that create ASMR content.

Emerging Gender Issues in Korean Online Media: A Temporal Semantic Network Analysis Approach

  • Lee, Young-Joo;Park, Ji-Young
    • Journal of Contemporary Eastern Asia
    • /
    • 제18권2호
    • /
    • pp.118-141
    • /
    • 2019
  • In South Korea, as awareness of gender equality increased since the 1990s, policies for gender equality and social awareness of equality have been established. Until recently, however, the gap between men and women in social and economic activities has not reached the globally desired level and led to social conflict throughout the country. In this study, we analyze the content of online news comments to understand the public perception of gender equality and the details of gender conflict and to grasp the emergence and diffusion process of emerging issues on gender equality. We collected text data from the online news that included the word 'gender equality' posted from January 2012 to June 2017 and also collected comments on each selected news item. Through text mining and the temporal semantic network analysis, we tracked the changes in discourse on gender equality and conflict. Results revealed that gender conflicts are increasing in the online media, and the focus of conflict is shifting from 'position and role inequality' to 'opportunity inequality'.

마이크로 블로그기반의 공간 지식 추출 기법연구 (A Technique for Extracting GeoSemantic Knowledge from Micro-blog)

  • 하수욱;남광우;류근호
    • Spatial Information Research
    • /
    • 제20권2호
    • /
    • pp.129-136
    • /
    • 2012
  • 최근 ISO/TC211, OGC, INSPIRE 등 국제기구들을 중심으로 시맨틱 기술을 활용한 공간정보의 공유 노력이 진행되고 있다. 또한 스마트폰의 대중화와 소셜 네트워킹 서비스의 활성화로 인해 온라인 소셜 커뮤니티에서 이슈를 추출하기 위한 연구들이 이루어지고 있다. 그러나 응용 수준에서 가용한 공간정보 온톨로지는 부족한 실정이며, 소셜 네트워크 서비스에서의 공간정보 추출 역시 텍스트 마이닝을 통한 지오코딩 부분에 집중되어 있다. 따라서 소셜 미디어 정보에서 공간 현상을 추출하여 시맨틱 공간 지식으로 변환하기 위한 방법은 매우 유용하게 활용될 수 있다. 또한 공간 현상을 단순한 빈발 키워드가 아닌 연관 이슈의 형태로 사용자에게 제공함으로써 공간상에 발생하는 이슈에 대한 이해도를 향상 시킬 수 있을 것이다. 따라서 본 논문에서는 소셜 미디어 서비스의 하나인 마이크로 블로그를 기반으로 데이터를 수집하여 데이터 마이닝 기술을 접목하여 연관 이슈를 추출하고, 이를 시공간 지식으로 변환하기 위한 공간 이슈 온톨로지 모델을 제안하였다. 이를 통해 향후 관련 시스템의 개발을 위한 참조모델 및 공간 온톨로지 구축을 위한 모델로써 유용하게 사용될 수 있을 것으로 기대된다.

텍스트마이닝을 활용한 정보보호 키워드 기반 소셜미디어 빅데이터 분석 (Social Media Bigdata Analysis Based on Information Security Keyword Using Text Mining)

  • 정진명;박영호
    • 한국산업정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.37-48
    • /
    • 2022
  • 디지털 기술의 발전으로 사회적 이슈들이 SNS와 같은 디지털 기반 플랫폼을 통해서 소통되고 여론을 형성하기도 한다. 본 연구에서는 소셜미디어를 통해서 공유되고 있는 정보보호 이슈관련 여론을 살펴보기 위하여 대표적인 단문 소셜네트워크서비스인 트위터 빅데이터 분석을 진행하였다. 2021년 1년간 14개 정보보호 관련 키워드를 중심으로 데이터를 수집한 후, 데이터마이닝 기술을 활용하여 용어 빈도(TF)분석과 피어슨 계수를 활용한 상관분석을 통해 키워드간의 상관관계를 밝혔다. 또한 잠재적 확률기반 LDA 토픽모델링을 실시하여 정보보호분야에 많은 관심을 받았던 6개의 주요 토픽을 도출하였다. 이러한 결과는 관련 산업의 전략수립이나, 정부 정책수립 시 주요 키워드를 도출하는 기초데이터로 활용될 수 있을 것으로 기대된다.

Improved Decision Tree Classification (IDT) Algorithm For Social Media Data

  • Anu Sharma;M.K Sharma;R.K Dwivedi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.83-88
    • /
    • 2024
  • In this paper we used classification algorithms on social networking. We are proposing, a new classification algorithm called the improved Decision Tree (IDT). Our model provides better classification accuracy than the existing systems for classifying the social network data. Here we examined the performance of some familiar classification algorithms regarding their accuracy with our proposed algorithm. We used Support Vector Machines, Naïve Bayes, k-Nearest Neighbors, decision tree in our research and performed analyses on social media dataset. Matlab is used for performing experiments. The result shows that the proposed algorithm achieves the best results with an accuracy of 84.66%.

소셜 빅데이터 마이닝 기반 이슈 분석보고서 자동 생성 (Automatic Generation of Issue Analysis Report Based on Social Big Data Mining)

  • 허정;이충희;오효정;윤여찬;김현기;조요한;옥철영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권12호
    • /
    • pp.553-564
    • /
    • 2014
  • 본 논문은 지금까지의 소셜미디어 분석과 분석보고서 생성의 세 가지 문제점을 해결하기 위해서 소셜 빅데이터 마이닝에 기반한 이슈분석보고서 자동 생성 시스템을 제안한다. 세 가지 문제점은 분석의 고립성, 전문가의 주관성과 고비용에 기인한 정보의 폐쇄성이다. 시스템은 자연언어 질의분석, 이슈분석, 소셜 빅데이터 분석, 소셜 빅데이터 상관성분석과 자동 보고서 생성으로 구성된다. 생성된 보고서의 유용성을 평가하기 위해, 본 논문에서는 리커트척도를 사용하였고, 빅데이터 분석 전문가 2명이 평가하였다. 평가결과는 리커트 척도 평가에서 보고서의 품질이 비교적 유용하고 신뢰할 수 있는 것으로 평가되었다. 보고서 생성의 저비용, 소셜 빅데이터의 상관성 분석과 소셜 빅데이터 분석의 객관성 때문에, 제안된 시스템이 소셜 빅데이터 분석의 대중화를 선도할 것으로 기대된다.

사회과학을 위한 양적 텍스트 마이닝: 이주, 이민 키워드 논문 및 언론기사 분석 (Quantitative Text Mining for Social Science: Analysis of Immigrant in the Articles)

  • 이수정;최두영
    • 한국콘텐츠학회논문지
    • /
    • 제20권5호
    • /
    • pp.118-127
    • /
    • 2020
  • 본 연구는 최근 사회과학에서 실시되고 있는 양적 텍스트 분석의 흐름과 분석을 실시함에 있어 주의해야 할 사례를 포함하여 기술 하였다. 특히, 2017년부터 2019년까지 3년간 학술지와 언론에서 사용된 "이주", "이민" 키워드를 기반으로 사례연구를 실시하였다. 이를 위해 최근 사회과학분야에서 주목 받는 자연어 처리 기술(NLP)를 이용한 양적 텍스트 분석 (Quantitate text analysis)을 사용하였다. 양적 텍스트 분석은 문서를 구조적 데이터로 변환하여, 가설의 발견 및 검증을 실시하는 데이터 과학의 영역으로, 데이터의 모델링 및 가시화 등이 가능하고, 특히 비구조화 된 데이터를 구조화할 수 있다는 점에서 사회과학 분야에 많이 도입하였다. 따라서 본 연구는 양적 텍스트 분석을 통해 "이주", "이민"을 키워드로 한 연구 및 언론 기사에 대한 통계 분석을 실시하고 도출된 결론에 대한 해석을 실시하였다.