• Title/Summary/Keyword: Soccer Ball Tracking

Search Result 9, Processing Time 0.047 seconds

Soccer Ball Tracking Robust Against Occlusion (가려짐에 강인한 축구공 추적)

  • Lee, Kwon;Lee, Chulhee
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.1040-1047
    • /
    • 2012
  • In this paper, we propose a ball tracking algorithm robust against occlusion in broadcasting soccer video sequences. Soccer ball tracking is a challenging task due to occlusion, fast motion and fast direction changes. Many works have been proposed based on ball trajectory. However, this approach requires heavy computational complexity. We propose a ball tracking algorithm with occlusion handling capability. Initial ball location is calculated using the circular hough transform. Then, the ball is tracked using template matching. Occlusion is handled by matching score. In occlusion cases, we generate a set of ball candidates. The ball candidates which exist in the previous frame were removed. On the other hand, the new appearing candidate is determined as the ball. Experiments with several broadcasting soccer video sequences show that the proposed method efficiently handles the occlusion cases.

Prediction of Ball Trajectory in Robot Soccer Using Kalman Filter (로봇축구에서의 칼만필터를 이용한 공의 경로 추정)

  • Lee, Jin-Hee;Park, Tae-Hyun;Kang, Geun-Taek;Lee, Won-Chang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2998-3000
    • /
    • 1999
  • Robot soccer is a challenging research area in which multiple robots collaborate in adversarial environment to achieve specific objectives. We designed and built the robotic agents for robot soccer, especially MIROSOT. We have been developing the appropriate vision algorithm, algorithm for ball tracking and prediction, algorithms for collaboration between the robots in an uncertain dynamic environment. In this work we focus on the development of ball tracking and prediction algorithm using Kalman filter. Robustness and feasibility of the proposed algorithm is demonstrated by simulation.

  • PDF

Real-time Ball Detection and Tracking with P-N Learning in Soccer Game (P-N 러닝을 이용한 실시간 축구공 검출 및 추적)

  • Huang, Shuai-Jie;Li, Gen;Lee, Yill-Byung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.447-450
    • /
    • 2011
  • This paper shows the application of P-N Learning [4] method in the soccer ball detection and improvement for increasing the speed of processing. In the P-N learning, the learning process is guided by positive (P) and negative (N) constraints which restrict the labeling of the unlabeled data, identify examples that have been classified in contradiction with structural constraints and augment the training set with the corrected samples in an iterative process. But for the long-view in the soccer game, P-N learning will produce so many ferns that more time is spent than other methods. We propose that color histogram of each frame is constructed to delete the unnecessary details in order to decreasing the number of feature points. We use the mask to eliminate the gallery region and Line Hough Transform to remove the line and adjust the P-N learning's parameters to optimize accurate and speed.

A Study on Tracking a Moving Object using Photogrammetric Techniques - Focused on a Soccer Field Model - (사진측랑기법을 이용한 이동객체 추적에 관한 연구 - 축구장 모형을 중심으로 -)

  • Bae Sang-Keun;Kim Byung-Guk;Jung Jae-Seung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • Extraction and tracking objects are fundamental and important steps of the digital image processing and computer vision. Many algorithms about extracting and tracking objects have been developed. In this research, a method is suggested for tracking a moving object using a pair of CCD cameras and calculating the coordinate of the moving object. A 1/100 miniature of soccer field was made to apply the developed algorithms. After candidates were selected from the acquired images using the RGB value of a moving object (soccer ball), the object was extracted using its size (MBR size) among the candidates. And then, image coordinates of a moving object are obtained. The real-time position of a moving object is tracked in the boundary of the expected motion, which is determined by centering the moving object. The 3D position of a moving object can be obtained by conducting the relative orientation, absolute orientation, and space intersection of a pair of the CCD camera image.

Soccer Image Sequences Mosaicing Using Reverse Affine Transform

  • Yoon, Ho-Sub;Jung Soh;Min, Byung-Woo;Yang, Young-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.877-880
    • /
    • 2000
  • In this paper, we develop an algorithm of soccer image sequences mosaicing using reverse affine transform. The continuous mosaic images of soccer ground field allows the user/viewer to view a “wide picture” of the player’s actions The first step of our algorithm is to automatic detection and tracking player, ball and some lines such as center circle, sideline, penalty line and so on. For this purpose, we use the ground field extraction algorithm using color information and player and line detection algorithm using four P-rules and two L-rules. The second step is Affine transform to map the points from image to model coordinate using predefined and pre-detected four points. General Affine transformation has many holes in target image. In order to delete these holes, we use reverse Affine transform. We tested our method in real image sequence and the experimental results are given.

  • PDF

Creating Deep Learning-based Acrobatic Videos Using Imitation Videos

  • Choi, Jong In;Nam, Sang Hun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.713-728
    • /
    • 2021
  • This paper proposes an augmented reality technique to generate acrobatic scenes from hitting motion videos. After a user shoots a motion that mimics hitting an object with hands or feet, their pose is analyzed using motion tracking with deep learning to track hand or foot movement while hitting the object. Hitting position and time are then extracted to generate the object's moving trajectory using physics optimization and synchronized with the video. The proposed method can create videos for hitting objects with feet, e.g. soccer ball lifting; fists, e.g. tap ball, etc. and is suitable for augmented reality applications to include virtual objects.

Soccer Game Analysis I : Extraction of Soccer Players' ground traces using Image Mosaic (축구 경기 분석 I : 영상 모자익을 통한 축구 선수의 운동장 궤적 추출)

  • Kim, Tae-One;Hong, Ki-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.51-59
    • /
    • 1999
  • In this paper we propose the technique for tracking players and a ball and for obtaining players' ground traces using image mosaic in general soccer sequences. Here, general soccer sequences mean the case that there is no extreme zoom-in or zoom-out of TV camera. Obtaining player's ground traces requires that the following three main problems be solved. There main problems: (1) ground field extraction (2) player and ball tracking and team indentification (3) player positioning. The region of ground field is extracted on the basis of color information. Players are tracked by template matching and Kalman filtering. Occlusion reasoning between overlapped players in done by color histogram back-projection. To find the location of a player, a ground model is constructed and transformation between the input images and the field model is computed using four or more feature points. But, when feature points extracted are insufficient, image-based mosaic technique is applied. By this image-to-model transformation, the traces of players on the ground model can be determined. We tested our method on real TV soccer sequence and the experimental results are given.

  • PDF

Implementation of the multi-target tracker for MIROSOT

  • In, Chu-Sik;Choi, Yong-Hee;Lee, Ja-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.828-831
    • /
    • 1997
  • One of the most important design factor for the image tracker is the speed of the data processing which allows real-time operation of the system and provides reasonably accurate performance at the same time. Use of powerful DSP alone does not guarantee to meet such requirement. In this paper, a simple efficient algorithm for real-time multi-target image tracking is suggested. The suggested method is based on a recursive centroiding technique and color table look-up. This method has been successfully implemented in a image processing system for Micro-Robot Soccer Tournament(MIROSOT). This tracker can track positions of a ball, 3 enemies, and 3 agents at the same time. The experimental results show that the processing time for each frame of image is less than 7ms, which is well within the 60Hz sampling interval for real-time operation.

  • PDF

Generating Augmented Lifting Player using Pose Tracking

  • Choi, Jong-In;Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.19-26
    • /
    • 2020
  • This paper proposes a framework for creating acrobatic scenes such as soccer ball lifting using various users' videos. The proposed method can generate a desired result within a few seconds using a general video of user recorded with a mobile phone. The framework of this paper is largely divided into three parts. The first is to analyze the posture by receiving the user's video. To do this, the user can calculate the pose of the user by analyzing the video using a deep learning technique, and track the movement of a selected body part. The second is to analyze the movement trajectory of the selected body part and calculate the location and time of hitting the object. Finally, the trajectory of the object is generated using the analyzed hitting information. Then, a natural object lifting scenes synchronized with the input user's video can be generated. Physical-based optimization was used to generate a realistic moving object. Using the method of this paper, we can produce various augmented reality applications.