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Abstract 

 
This paper proposes an augmented reality technique to generate acrobatic scenes from hitting 

motion videos. After a user shoots a motion that mimics hitting an object with hands or feet, 

their pose is analyzed using motion tracking with deep learning to track hand or foot movement 

while hitting the object. Hitting position and time are then extracted to generate the object’s 

moving trajectory using physics optimization and synchronized with the video. The proposed 

method can create videos for hitting objects with feet, e.g. soccer ball lifting; fists, e.g. tap ball, 

etc. and is suitable for augmented reality applications to include virtual objects. 
 

 

Keywords: Augmented Reality, Artificial Intelligence, Pose Tracking, Motion Analysis, 

Physics Optimization 
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1. Introduction 

Artificial intelligence has become an active topic for the fourth industrial revolution and has 

been applied to various fields, with tremendous development speed. Machine learning is a 

major thrust for artificial intelligence, being one of the most important emerging artificial 

intelligence technologies. Traditional computer graphics is gradually adopting these deep 

learning techniques, in particular for character animation. Techniques have been developed to 

automatically generate repetitive movements [1], with many video techniques being brought 

over to learning human movements [2]. Motion capture is an essential technology for character 

animation, supplying the required motion details, but remains computationally expensive and 

time consuming. Therefore, considerable effort has been focused to solve these shortcomings, 

and advanced motion capture technologies are starting to emerge [3, 4]. However, 

computational capabilities lag the performance from top-end motion capture equipment. On 

the other hand, some of the software developments have potential outside strictly motion 

capture applications, e.g. to compare expert motion to that for new or average users, or to 

quickly check practical motion against prototype motion data. 

Consider two key base skills: lifting a soccer ball and tap ball. Lifting a soccer ball uses 

both feet to control the ball in the air without allowing it to drop to the ground. This is an 

essential skills for any soccer player but requires considerable time and effort to learn. Tap 

ball attaches a light rubber ball with a rubber band on the player’s cap, and the player practices 

continuous punches with both fists. This improves a boxer’s ability to see moving objects and 

develops their ability to hit objects accurately. However, this is also difficult skill for beginners 

to learn. This paper uses pose tracking and augmented reality to identify hitting motions, such 

as punches and kicks, from videos. Consequently, we propose a method to create acrobatic 

scenes, such as lifting a soccer ball or tap ball, from a beginner’s video. 

We used motion analysis from deep learning to build the proposed framework. User motion 

was analyzed in real time tracking the person’s 2-dimensional (2D) pose from a video [5]. This 

is technique can extract skeleton structures for several people in a single video. Although it 

does not provide 3-dimensional (3D) location information, it is possible to precisely extract 

human skeleton structure from a 2D image. Thus, the proposed framework does not require 

3D information because it creates an acrobatic scene by synchronizing a virtual object to a 

person in the video, without requiring precise 2D position or information. The hit point for the 

desired body part is extracted and object motion is subsequently generated and synchronized. 

Thus, we can quickly create acrobatic scenes for various objects. The proposed method is 

particularly useful for augmented reality, generating an acrobatic video by overlaying virtual 

objects on the original video. 

2. Related Work 

Estimating human pose from an image focuses on finding individual’s body parts [6-9]. In 

particular, estimating each person's pose in a scene where several unrelated people appear 

simultaneously is a difficult problem. 

① Unknown people in each image appear at random locations and sizes.  

② It is difficult to identify each person's pose accurately due to complex spatial 

interference due to interactions between humans in contact with each other or 

occluding parts of other people’s bodies. 
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③ Complexity tends to increase rapidly with increasing number of people, making it 

difficult to extract all poses in real time. 

Current approaches [10-13] use detection algorithms to extract people, and perform pose 

estimation for each detected person. This top-down approach directly utilizes first person pose 

estimation techniques [14-17], but detection tends to fail rapid pose detection is required, 

particularly when people are close together. Execution time is proportional to the number of 

people since individual pose estimation is required for every identified person, and hence 

increased number of people increases computational cost. 

Bottom-up approaches are attractive since the provide stability for fast detection and have 

the potential to separate real-time complexity from the number of people in the image. 

However, these approach do not use other body parts or other people’s global context signals, 

and hence previous bottom-up techniques [18, 19] were less efficient because final parsing 

required time consuming global inference. Insafutdinov et al.[19] significantly improved real-

time performance based on Pishchulin et al.’s approach [18], using a robust body part detection 

algorithm based on ResNet [20] and image dependent pairwise scores. However, the method 

limited the number of suggestions per site and required several minutes per image. Cao et al. 

[5] proposed a technique to quickly and accurately find skeleton structures for multiple people 

in a single image in real time. This paper quickly analyzes user poses in video frames using 

the Cao et al. technique, and subsequently generates acrobatic motion. 

Various techniques have been applied previously to control rigid bodies [21, 22], smoke 

and water [23, 24] and deformable bodies [25, 26]. The proposed framework incorporates 

concepts from interactive interfaces to control rigid body movement [22], employing a few 

physical parameters to control passive rigid body simulation. Manually controlling body 

movement paths and character poses [27] can help to create characters that handle objects. 

Choi et al. [28, 29] proposed a method to generating object motions depending on character 

motion in 3D space. This paper adopts a similar concept, but uses motion capture data to 

provide accurate locations. Generally, locations extracted from images are an approximation 

and contain considerable noise. However, we create object motion using skeleton position 

rather than speed taken from the moving person’s video. 

Several previous studies have considered objects using physically based characters [30, 

31]. Chemin et al. [30] created a juggling motion from a 2D physical character’s upper body 

using reinforcement learning to generate various juggling motions. However, but since the 

motion was created reinforcement learning, it was somewhat different from actual human 

motion. Hong et al. [31] generated relatively realistic soccer ball dribbling motions using 

model predictive control (MPC). The physical based character was able to fine-tune ankle 

movement to send the ball in the correct direction. Merel et al. [32] applied vision-based 

reinforcement learning to physics-based characters to create a character's motion that can catch 

an arbitrary object and throw it at a target point. Eom et al. [33] created a physics-based 

character that can effectively catch a flying object by using the model predictive control 

framework that synthesizes the movements of the eyes and head. Starke et al. [34] proposed a 

effective method to generate motion in ball games handling an object by training local bones 

individually. Especially, it can generate basketball dribbling naturally and various connected 

motions. In contrast, the method proposed here automatically controls ankle movement using 

path control for the rigid body simulation to create an appropriate movement path depending 

on the position of the part handling the object in the video. 
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3. Proposed Method 

3.1 Pose Tracking 

User motion video quality is very important, since more similar user to the desired acrobatic 

motion will allow better synchronization with object movement and hence more natural 

appearing resulting video. Generated acrobatic scene quality can also be improved by 

practicing while watching acrobatic motion videos prior to shooting the user video.  Therefore, 

we created lifting scenes for ball shaped objects using feet or thighs, and had users practice 

feet and thighs movements several times while watching the created lifting videos. Human 

body part locations were extracted from user video using Cao et al.’s technique [5] to track 

posture in real time for various people in a video using deep learning. We improved posture 

tracking performance by limiting the number of people to one and reducing video quality. 

Fig. 1 provides an overview of the proposed method. Fig. 1(a) is the input user video 

(lifting a soccer ball while walking forward), Fig. 1(c) is the generated soccer ball lifting video, 

and Fig. 1(b) shows the analysis to calculate hitting information, and subsequently generate 

the object’s moving trajectory. Analyzing user motion and synchronizing the object’s 

movement trajectory to the user’s video creates a scene lifting the soccer ball. 

 

 
(a)    (b)    (c) 

Fig. 1.  Proposed method overview 

3.2 Hit Spot Search 

It is essential to generate hit spot information to subsequently generate an object’s moving 

trajectory. There are two relevant information types regarding hit spots: location and time 

information. It is very important to control the applied force to successfully lift a soccer ball 

with your feet. We analyzed player videos (particularly lifting the soccer ball) while reducing 

foot speed to the minimum when hitting the ball. Players tended to pull their feet in the 

opposite direction as they were going to hit the soccer ball. Thus, this was used as a criterion 

for identifying object hitting points. 

 

 
(a)             (b) 

Fig. 2.  Original and relative movement path for the left foot 

 

This study created not only the motion to lift an object while stationary, but also a lifting 

scene while moving. Fig. 2 shows that after finding the movement trajectory for the body part 
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hitting the object, the relative movement path was generated based on the skeleton joint that 

provided the reference for the hitting part. Fig. 2(a) is the original hitting part movement path, 

and Fig. 2(b) is the relative movement path calculated for a specific joint. For example, relative 

paths for left and right feet were generated based on the left and right hip joints, respectively. 

The red dot indicates the exact hitting part position, i.e., the instep, midway between toes and 

ankle. The gray skeleton is the user pose tracked from the video. In principle relative 

movement trajectory should around the origin, but we moved the origin to the initial position 

to compare with the original movement path. 

Hit lines were extracted to find hit spot information, and the target hit direction was 

calculated and used to find hit lines for the hitting part. The optimal slope for the straight line 

passing through the points was calculated using all positions for the relative movement path 

as point cloud data to provide the reference hit direction, 

 

   (1) 

 

where a is the, b is the y-intercept, 𝒙̅ and 𝒚̅ are average x and y values, and n is the number of 

points. The reference hit direction is from closer to distant points relative to the hitting part’s 

initial position. 

 

 
(a)      (b) 

Fig. 3.  Calculating reference hit direction 

 

Fig. 3 Shows the general approach to calculating the reference hit direction from relative 

movement paths (Fig. 3(a)) converted to point cloud data (Fig. 3(b)). Gray lines are relative 

movement paths, black dots hitting part location in each frame. The reference hit direction was 

calculated from the point cloud data and the thick red line segment is the standard hit direction, 

where the hitting part moves from the lighter to darker end. 

The hit line connects points in the point cloud facing the same direction as the reference 

hit direction. From the initial position, the direction to each subsequent position is derived 

using the two previous points from the current position, which becomes the movement 

direction for the current position. This minimizes error effects due fundamental pose tracking 

issues. Although the movement direction could be taken as the direction from the current to 

next position, this will exacerbate noise effects. Thus, more accurate results can be obtained 

by using the previous and next positions. 

The criteria for a hit line are that the angle difference between moving and reference hit 

direction for the current position should be within 60°, and there must be at least 3 consecutive 

(1) 
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points. These conditions filter most noise and provide a relatively accurate position. Fig. 4(a) 

shows extracted hit lines. Hitting position was the point where movement direction changed 

rapidly. However, it was not possible to completely remove noise (Fig. 4(a)), and hence 

additional methods are required. Remaining noise was characterized by shorter length than 

normal hit lines. Fig. 4(b) shows that removing lines shorter than 30% maximum length 

significantly reduces noise. Tighter controls, i.e., increasing the cutoff length, would further 

reduce noise, but cause problems with specifying different data. Therefore, 30% threshold was 

selected as a suitable trade-off with remaining noise removed using the time interval constraint 

for hitting time. 

 

 
(a)      (b) 

Fig. 4.  Extracting hit lines and removing noise 

 
Table 1. Hitting information for the left foot 

Frame 39 48 59 112 164 214 

Length 12.29 12.01 54.44 75.22 94.33 113.45 

 
Table 2. Hitting information for the right foot 

Frame 29 86 138 189 

Length 59.24 74.39 83.05 93.44 

 

Table 1 and Table 2 summarize extracted hit spot information for the left and right feet, 

respectively. The first and second left foot lengths (Table 1, red text) are relatively short, i.e., 

these are noise and can be cleanly removed with the time interval filter; whereas all right foot 

noise was removed by the threshold (Table 2). Increased left foot noise is due to the left foot 

being regularly occluded by the right foot since the video was taken from the user’s right. The 

reverse would apply if the video were shot from the user's left side. 

Fig. 5 shows hit lines calculated from left and right foot relative movement paths (red and 

blue lines, respectively), with corresponding blue and red dots showing hit spots. Gray curves 

are the relative movement paths for the hitting part. 

 

 
(a)      (b) 

Fig. 5.  Hit lines for (a) left and (b) right feet 
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3.3 Object Synchroization 

Generating accurate hitting information is essential to synchronize object motion with the 

video. As discussed above, the generated information includes noise and cannot be used 

immediately. Remaining noise can be removed using a suitable hitting time interval, e.g. it is 

difficult to lift a soccer ball more than every 0.5 seconds. Therefore, we can filter the data by 

checking if the interval between neighboring hit spots is less than 0.5 s, i.e., 15 frames, in 

which case one of the two hit cases should be considered as noise and the shorter hit line 

removed. However, if both feet are used then the interval between hitting points for one foot 

will be relatively large. Therefore, we need to combine hitting information generated by all 

hitting parts and then sort them in chronological order to more clearly identify noise. 

Table 3 shows collects typical hitting information for both feet, sorted chronologically. 

Consider the first hit point pair in the table. The second hit (frame 39, left foot, red text) is 

only 10 frames from the first (frame 29, right foot, black text), which fails the criterion that 

hitting interval should be 15 frames or more, and hence one of the pair should be eliminated. 

Comparing hit line lengths, the first hit lines is longer than the second, and hence the second 

hit is regarded as noise and removed. Similarly, the second pair (frame 48, left foot, red text; 

and frame 59, left foot, black text) differ by 11 frames, and the first hit line is considerably 

shorter than the second. Thus, the first hit of the pair (frame 48) should be treated as noise and 

removed. All remaining hit pairs have larger hit intervals, and long hit lines, hence only valid 

hitting information remains. 

 
Table 3. Hitting information for both feet 

Foot Right Left Left Left Right Left Right Left Right Left 

Frame 29 39 48 59 86 112 138 164 189 214 

Length 59.24 12.29 12.01 54.44 74.39 75.22 83.05 94.33 93.44 113.45 

 

 
(a)      (b) 

Fig. 6.  (a) Hit lines for both feet and (b) object movement trajectory 

 

Fig. 6 shows the hit lines and object trajectories for the data in Table 3. Fig. 6(a) upper 

shows the original hit lines for both feet, and the lower image shows the same data after noise 

removal (i.e., removing short hit lines). Red and blue lines and dots represent left and right 

foot hit lines and spots, respectively. Gray lines represent overall movement path for both feet. 
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Since the exact hitting information is generated, the object trajectory can be created using 

Popovic et al.’s [22] method, an effective mechanism to create rigid movement trajectory 

through optimization. We regarded the object as an elastic body with an appropriate modulus 

to generate the object moving trajectory. Fig. 6(b) shows the resulting object trajectory 

corresponding to the noise filtered hit data. Lower curves are hit lines, shown as absolute rather 

than relative movement, where red and blue lines represent the left and right feet, respectively, 

with colored dots indicating hitting positions. The black curve represents the derived object 

trajectory. Since the real object is not a point or particle, we need to slightly adjust the hitting 

position with an appropriate offset, i.e., moving the object trajectory upwards by object radius, 

to provide a more natural synchronization with the video. 

4. Experimental Results 

To increase the generated acrobatic video realism, we adjusted physical parameters for the 

generated by the proposed method, based on video of an expert actually lifting the object, as 

shown in Fig. 7. The magenta circle is the ball position as calculated by the proposed method, 

which closely matches the actual position. Fig. 8 shows a series of images captured every 0.1 

seconds for an expert hitting a tap ball with both fists. Similarly, the (smaller) magenta circle 

is tap ball position as calculated by the proposed method. The calculated position is similar to 

the actual ball position, but differs slightly since the actual ball is quite light and hence affected 

by irregular factors, such as wind and air resistance. In contrast, the soccer ball (Fig. 7) was 

relatively heavy, hence less affected by wind or air resistance, providing almost identical actual 

and calculated positions. 

 

 
Fig. 7.  Typical model results for soccer ball lifting 

 

 
Fig. 8.  Typical model results for tap ball 
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The proposed framework was implemented using a computer with Intel Core i7-7700K 

CPU, 48GB RAM, and NVIDIA GeForce GTX 1080Ti GPU to generate experimental results. 

Videos used in the experiment were all 1280×720 pixel resolution, and were shot at 30 frames 

per second. And we used game engine, Unity for generating our results. 

Table 4 shows typical acrobatic motion information generated from user videos. Video 

length is the captured user video time, and number of frames refers to how many frames were 

used to analyze user pose from the input video. Calculation time is the time required analyze 

user pose and generate object motion to synchronize with the video. We selected six 

representative moving videos for this paper, excluding simple repetitive motions, with details 

as shown in Table 4. 

① Hitting the soccer ball with right and left feet alternately while moving forward.  

② Hitting the soccer ball with right and left thighs alternatively while moving forward. 

③ Hitting the soccer ball with left foot and right knee alternately while moving forward.  

④ Hitting the tap ball with right and left fists alternately while walking forward.  

⑤ Hitting the tap ball with right and left fists alternately while walking backward.  

⑥ Hitting the tap ball left and right fists alternately while simultaneously lifting the soccer ball 

with left and right feet alternately, while moving forward. 

 
Table 4. Synthesized video details 

No. Description 
Video 

length (s) 

Number of 

frames 

Calculatio

n time (s) 

1 Soccer Lifting with Both Feet Moving Forward 15.2 457 9.6 

2 Soccer Lifting with Both Thighs Moving Forward 12.8 385 8.0 

3 Soccer Lifting with Foot and Thigh Moving Forward 14.8 444 9.2 

4 Tabball Hitting with Both Fists Moving Forward 10.0 301 6.5 

5 Tabball Hitting with Both Fists Moving Backward 13.3 401 8.3 

6 Soccer Lifting and Tabball Hitting Moving Forward 8.4 253 5.4 

 

Fig. 9 to 14 show experiment outcomes using videos 1 to 6 from Table 4. Subfigures (a) 

show user pose analysis outcomes in relative coordinates. The left pair of images indicate 

where the hitting part moved with the point cloud (black dots) and average hit direction (the 

thick line). Red and blue lines indicates left and right areas, respectively. The right pair of 

images show hit lines and positions (red and blue curves and dots). Subfigures (b) show the 

generated object trajectories in the original coordinates from the input video. White curves 

represent the object trajectory, and red and blue curves and dots represent hit lines and 

positions for left and right areas, respectively. Subfigures (c) shows a series of images from 

the resulting video. Fig. 9 to 11 were captured every 0.2 s and Fig. 12 to 14 every 0.1 s. Black 

lines indicate the rubber band connected to the tap ball object (where appropriate). Fig. 9 and 

Fig. 14 were captured almost perpendicular to the camera, whereas Fig. 10 to 13 were captured 

at a slightly oblique angle to ensure accurate results by avoiding significant occluded portions. 
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(a)      (b) 

 
(c) 

Fig. 9.  Soccer lifting while moving forward 

 

 
(a)      (b) 

 
(c) 

Fig. 10.  Soccer lifting from thighs while moving forward 
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(a)      (b) 

 
(c) 

Fig. 11.  Soccer lifting from feet and thighs while moving forward 

 

 
(a)      (b) 

 
(c) 

Fig. 12.  Tap ball with both fists while moving forward 
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(a)      (b) 

 
(c) 

Fig. 13.  Tap ball with both fists while moving backward 

 

 

 
(a)      (b) 

 
(c) 

Fig. 14.  Soccer lifting with both feet and tap ball with both fists while moving forward 
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5. Discussion 

The proposed method was intended to allow adding virtual objects into existing video, and 

several somewhat awkward aspects remain: color differences depending on light direction, 

object shadow (or absence), and the object is always in front of the video. It also looks 

somewhat unnatural how the foot touches the ball due to errors tracking user poses in 2D 

coordinates. As discussed above, awkward hitting was alleviated by adding an offset to the 

hitting point. 

The proposed method provides a useful mechanism to model an object while hitting it, but 

cannot maintain contact with or hold the object. Thus, maintaining the object on the instep or 

thigh cannot be modelled. In addition, scenes alternating feet and thigh with the same leg 

cannot be automatically generated, although this can be accomplished by manually 

distinguishing what foot or thigh to use. It is also impossible to process occluded areas, due to 

motion tracking limitations from a video. Hence, the video shot direction must be carefully 

selected to ensure the complete pose well exposed. The most effective direction was 

approximately 60° for stationery shots. 

We set the criterion to remove noise as the hit line having length less than 30% of maximum 

hit line length. However, this sometimes removed valid hit lines. Therefore, noise removal 

was performed while simultaneously checking against the video. The adjacent hit time interval 

criterion (less than 15 frames) worked well for soccer ball lifting, but not as well for tap ball, 

since the user could quite easily swing their fists somewhat faster than this. Therefore, the 

criterion was reduced to 10 frames for tap ball videos. 

6. Conclusion 

This paper proposed a framework to generating an acrobatic video adding a virtual object with 

various motions by analyzing the input video and generating pose tracking and object motion. 

Creating such a combined video manually would require considerable time and effort, whereas 

the proposed method produced acceptable results easily and within seconds. We considered 

various irregular motions for the experiments, but these also needed to motions any user could 

easily learn, and hence we were limited to somewhat repetitive and regular motions. However, 

the proposed framework is capable of representing more complex and irregular motions. For 

example, feet and thighs could be used alternately at different times, and it is also possible to 

lift the soccer ball with the heels. As users became more familiar with the exercise, the could 

also handle the balls irregularly with both feet and fists. 

The proposed method will help humans solve interesting problems with object movements; 

allowing simple inclusion of regular interaction between humans and objects, as commonly 

seen in real surroundings, to create various application scenes. Thus, it is a very important to 

interact between humans and the environment. Currently, character motion is created against 

a fixed environment, but the proposed framework allows object motion to respond to human 

motion. This provides an alternative to human-object interaction, and could be applied to 

various entertainment industries. It requires considerable time to learn complex techniques, 

such as lifting a soccer ball. However, the proposed framework would allow anyone can to 

perform such difficult movements in an augmented reality environment within seconds. 

Putting this augmented reality application onto mobile phones would provide new user 

experiences not previously considered possible.  

Future studies will solve the various problems noted above and expand the proposed 

method in various ways. We will allow users to generate acrobatic videos in real time by 



726                                                   Choi et al.: Creating Deep Learning-based Acrobatic Videos Using Imitation Videos 
 

 

receiving user motion from webcams, and expand the framework to allow multiple users to 

create collaborative acrobatic motions. Various obstacle objects can be introduced to provide 

means for users to manipulate virtual objects more intuitively and complexly. We also plan to 

expand the object handling areas to other body parts, such as hands and heads, to create more 

dynamic acrobatic scenes. 
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