• Title/Summary/Keyword: Sobel Edge Detection Method

Search Result 81, Processing Time 0.032 seconds

Railway sleeper crack recognition based on edge detection and CNN

  • Wang, Gang;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.779-789
    • /
    • 2021
  • Cracks in railway sleeper are an inevitable condition and has a significant influence on the safety of railway system. Although the technology of railway sleeper condition monitoring using machine learning (ML) models has been widely applied, the crack recognition accuracy is still in need of improvement. In this paper, a two-stage method using edge detection and convolutional neural network (CNN) is proposed to reduce the burden of computing for detecting cracks in railway sleepers with high accuracy. In the first stage, the edge detection is carried out by using the 3×3 neighborhood range algorithm to find out the possible crack areas, and a series of mathematical morphology operations are further used to eliminate the influence of noise targets to the edge detection results. In the second stage, a CNN model is employed to classify the results of edge detection. Through the analysis of abundant images of sleepers with cracks, it is proved that the cracks detected by the neighborhood range algorithm are superior to those detected by Sobel and Canny algorithms, which can be classified by proposed CNN model with high accuracy.

Learning of Rules for Edge Detection of Image using Fuzzy Classifier System (퍼지 분류가 시스템을 이용한 영상의 에지 검출 규칙 학습)

  • 정치선;반창봉;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.252-259
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection of a image. The FCS is based on the fuzzy logic system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. There are two different approaches, Michigan and Pittsburgh approaches, to acquire appropriate fuzzy rules by evolutionary computation. In this paper, we use the Michigan style in which a single fuzzy if-then rule is coded as an individual. Also the FCS employs the Genetic Algorithms to generate new rules and modify rules when performance of the system needs to be improved. The proposed method is evaluated by applying it to the edge detection of a gray-level image that is a pre-processing step of the computer vision. the differences of average gray-level of the each vertical/horizontal arrays of neighborhood pixels are represented into fuzzy sets, and then the center pixel is decided whether it is edge pixel or not using fuzzy if-then rules. We compare the resulting image with a conventional edge image obtained by the other edge detection method such as Sobel edge detection.

  • PDF

An Edge Detection Method for Gray Scale Images Based on their Fuzzy System Representation

  • Moon, Byung-Soo;Lee, Hyun-Chul;Kim, Jang-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.283-286
    • /
    • 2001
  • Based on a fuzzy system representation of gray scale images, we derive an edge detection algorithm whose convolution kernel is different from the known kernels such as those of Roberts', Prewitt's or Sobel's gradient. Our fuzzy system representation is an exact representation of the bicubic spline function which represents the gray scale image approximately. Hence the fuzzy system is a continuous function and it provides a natural way to define the gradient and the Laplacian operator. We show that the gradient at grid points can be evaluated by taking the convolution of the image with a 3 3 kernel. We also show that our gradient coupled with the approximate value of the continuous function generates an edge detection method which creates edge images clearer than those by other methods. A few examples of applying our methods are included.

  • PDF

Information extraction of the moving objects based on edge detection and optical flow (Edge 검출과 Optical flow 기반 이동물체의 정보 추출)

  • Chang, Min-Hyuk;Park, Jong-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.822-828
    • /
    • 2002
  • Optical flow estimation based on multi constraint approaches is frequently used for recognition of moving objects. However, the use have been confined because of OF estimation time as well as error problem. This paper shows a new method form effectively extracting movement information using the multi-constraint base approaches with sobel edge detection. The moving objects anr extraced in the input image sequence using edge detection and segmentation. Edge detection and difference of the two input image sequence gives us the moving objects in the images. The process of thresholding removes the moving objects detected due to noise. After thresholding the real moving objects, we applied the Combinatorial Hough Transform (CHT) and voting accumulation to find the optimal constraint lines for optical flow estimation. The moving objects found in the two consecutive images by using edge detection and segmentation greatly reduces the time for comutation of CHT. The voting based CHT avoids the errors associated with least squares methods. Calculation of a large number of points along the constraint line is also avoided by using the transformed slope-intercept parameter domain. The simulation results show that the proposed method is very effective for extracting optical flow vectors and hence recognizing moving objects in the images.

A Facial Region Detection using the Skin Color and Edge Information at YCbCr (YCbCr 색공간에서 피부색과 윤곽선 정보를 이용한 얼굴 영역 검출)

  • 권혁봉;권동진;장언동;윤영복;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2004
  • This thesis proposes a face detection algorithm using the color and edge informations in color image. The proposed algorithm segments skin color by Cb and Cr in YCbCr coordinates. Then face candidate regions are made after morphological filtering and labeling. For the regions, the Sobel vortical operation and horizontal projection are performed in the Y luminance components. The peak value indicates the eye location. Similarly, the chin location is detected by the Sobel horizontal operation and horizontal projection. The computer simulation shows that the proposed method gains similar detection rates of previous method and prevent facial region from including neck by detection of chin.

  • PDF

An Edge Extraction Method Using K-means Clustering In Image (영상에서 K-means 군집화를 이용한 윤곽선 검출 기법)

  • Kim, Ga-On;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.281-288
    • /
    • 2014
  • A method for edge detection using K-means clustering is proposed in this paper. The method is performed through there steps. Histogram equalizing is applied to the image for the uniformed intensity distribution. Pixels are clustered by K-means clustering technique. Then Sobel mask is applied to detect edges. Experiments showed that this method detected edges better than conventional method.

A Study on Edge Detection Algorithm using Modified Mask in Salt and Pepper Noise Images (Salt and Pepper 잡음 영상에서 변형된 마스크를 이용한 에지 검출 알고리즘에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.210-216
    • /
    • 2014
  • The edge in the image is a part which the brightness changes rapidly between the object and the object or objects and background, and includes information of the features such as size, position, orientation, and texture of the object. The edge detection is the technique that acquires these information of the images, and now the researches to detect edges are making steady progress. Typical conventional edge detection methods are Sobel, Prewitt, Roberts using the first derivative operator and Laplacian method using the second derivative operator and so on. These methods is more or less insufficient that the characteristics of the edge detection in the image added salt and pepper noise. therefore, in this paper, an edge detection algorithm using modified mask that applies different size mask according to noise density of local mask is proposed.

The Characteristics of Edge Detection in Blurring Images by the Hybrid Functions for Local Scale Control (Local Scale변화에 대한 하이브리드 함수의 블러링 명상의 에지검출 특성)

  • 오승환;서경호;김태효
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.1
    • /
    • pp.53-62
    • /
    • 2001
  • In this paper, the hybrid function by local scale control is proposed to detect the optimal edges from blurred images. In the case of image capturing, some blurring is occurred by the characteristics of the illumination and the reflected light. During processing the blurred image, it is difficult to detect perfect edges. This algorithm proposed a new hybrid function which is merged Gaussian function and the second derivative of Gaussian function. And it detects the optimal edges applying directional edge detection by Canny algorithm as the scale factor of $\sigma$ in the given local mask has been changed after convolving the hybrid function for input image. In the result, the performance is confirmed that this algorithm is better than Sobel, Robert and Canny edge detector by analyzing the some test images. And the results is obtained 0.2 ㏈ ~ 14 ㏈ of PSNR than those conventional method.

  • PDF

Fuzzy Classifier System for Edge Detection

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.52-57
    • /
    • 2003
  • In this paper, we propose a Fuzzy Classifier System(FCS) to find a set of fuzzy rules which can carry out the edge detection. The classifier system of Holland can evaluate the usefulness of rules represented by classifiers with repeated learning. FCS makes the classifier system be able to carry out the mapping from continuous inputs to outputs. It is the FCS that applies the method of machine learning to the concept of fuzzy logic. It is that the antecedent and consequent of classifier is same as a fuzzy rule. In this paper, the FCS is the Michigan style. A single fuzzy if-then rule is coded as an individual. The average gray levels which each group of neighbor pixels has are represented into fuzzy set. Then a pixel is decided whether it is edge pixel or not using fuzzy if-then rules. Depending on the average of gray levels, a number of fuzzy rules can be activated, and each rules makes the output. These outputs are aggregated and defuzzified to take new gray value of the pixel. To evaluate this edge detection, we will compare the new gray level of a pixel with gray level obtained by the other edge detection method such as Sobel edge detection. This comparison provides a reinforcement signal for FCS which is reinforcement learning. Also the FCS employs the Genetic Algorithms to make new rules and modify rules when performance of the system needs to be improved.

A study on image edge detection using adaptive morphology Meyer wavelet-CNN (적응적 형상학 Meyer 웨이브렛-CNN을 이용한 영상 에지 검출 연구)

  • Beak, Young-Hyun;Moon, Sung-Rung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.704-709
    • /
    • 2003
  • The digital image can be distorted by a noise for a transmission or other elements of system. It happen to be vague of a boundary side in the division of an image object, especially, boundary side of an input image is very important because it can be determined to the division and detection element in pattern recognition. Therefore it is proposed an edge detection method of optimal to divide and detect exactly a boundary part. In this paper, it detected the optimal edge with applying this image to Meyer wavelet-CNN algorithm, after it does level up a boundary side of an image by using the adaptive morphology as the threshold of an input image. It confirmed that the proposed algorithm is more superior to the conventional methods and the conventional Sobel method which is an image edge detection algorithm. Especially, it is confirmed by simulation that the proposed algorithm can be got the better result edge at the place of closing to each edges and having smoothly curved line.